期刊论文详细信息
BMC Bioinformatics
Network design and analysis for multi-enzyme biocatalysis
Research Article
Lisa Katharina Blaß1  Elmar Heinzle1  Christian Weyler1 
[1] Biochemical Engineering Institute, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany;
关键词: Network design;    Network analysis;    Pathway;    Biocatalysis;    Multi-enzyme catalysis;    Mixed-integer linear program;    Path-finding;    Side reactions;    Thermodynamics;    Synthetic biology;   
DOI  :  10.1186/s12859-017-1773-y
 received in 2017-04-12, accepted in 2017-07-30,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundAs more and more biological reaction data become available, the full exploration of the enzymatic potential for the synthesis of valuable products opens up exciting new opportunities but is becoming increasingly complex. The manual design of multi-step biosynthesis routes involving enzymes from different organisms is very challenging. To harness the full enzymatic potential, we developed a computational tool for the directed design of biosynthetic production pathways for multi-step catalysis with in vitro enzyme cascades, cell hydrolysates and permeabilized cells.ResultsWe present a method which encompasses the reconstruction of a genome-scale pan-organism metabolic network, path-finding and the ranking of the resulting pathway candidates for proposing suitable synthesis pathways. The network is based on reaction and reaction pair data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the thermodynamics calculator eQuilibrator. The pan-organism network is especially useful for finding the most suitable pathway to a target metabolite from a thermodynamic or economic standpoint. However, our method can be used with any network reconstruction, e.g. for a specific organism. We implemented a path-finding algorithm based on a mixed-integer linear program (MILP) which takes into account both topology and stoichiometry of the underlying network. Unlike other methods we do not specify a single starting metabolite, but our algorithm searches for pathways starting from arbitrary start metabolites to a target product of interest. Using a set of biochemical ranking criteria including pathway length, thermodynamics and other biological characteristics such as number of heterologous enzymes or cofactor requirement, it is possible to obtain well-designed meaningful pathway alternatives. In addition, a thermodynamic profile, the overall reactant balance and potential side reactions as well as an SBML file for visualization are generated for each pathway alternative.ConclusionWe present an in silico tool for the design of multi-enzyme biosynthetic production pathways starting from a pan-organism network. The method is highly customizable and each module can be adapted to the focus of the project at hand. This method is directly applicable for (i) in vitro enzyme cascades, (ii) cell hydrolysates and (iii) permeabilized cells.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311102938030ZK.pdf 1507KB PDF download
Fig. 1 96KB Image download
Fig. 2 582KB Image download
Fig. 2 4215KB Image download
Fig. 2 172KB Image download
Fig. 1 104KB Image download
12864_2016_2889_Article_IEq3.gif 1KB Image download
Fig. 1 181KB Image download
12951_2015_155_Article_IEq32.gif 1KB Image download
12951_2015_155_Article_IEq33.gif 1KB Image download
12951_2015_155_Article_IEq34.gif 1KB Image download
Fig. 1 134KB Image download
MediaObjects/12888_2023_5242_MOESM1_ESM.docx 20KB Other download
Fig. 9 7247KB Image download
MediaObjects/12888_2023_5242_MOESM2_ESM.docx 44KB Other download
12944_2023_1927_Article_IEq6.gif 1KB Image download
12944_2023_1927_Article_IEq7.gif 1KB Image download
MediaObjects/12888_2023_5242_MOESM3_ESM.docx 20KB Other download
Table 1 278KB Table download
Fig. 3 336KB Image download
12944_2023_1927_Article_IEq13.gif 1KB Image download
MediaObjects/40249_2023_1146_MOESM7_ESM.tif 16152KB Other download
【 图 表 】

12944_2023_1927_Article_IEq13.gif

Fig. 3

12944_2023_1927_Article_IEq7.gif

12944_2023_1927_Article_IEq6.gif

Fig. 9

Fig. 1

12951_2015_155_Article_IEq34.gif

12951_2015_155_Article_IEq33.gif

12951_2015_155_Article_IEq32.gif

Fig. 1

12864_2016_2889_Article_IEq3.gif

Fig. 1

Fig. 2

Fig. 2

Fig. 2

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  文献评价指标  
  下载次数:9次 浏览次数:1次