BMC Bioinformatics | |
Network design and analysis for multi-enzyme biocatalysis | |
Research Article | |
Lisa Katharina Blaß1  Elmar Heinzle1  Christian Weyler1  | |
[1] Biochemical Engineering Institute, Saarland University, Campus A1.5, 66123, Saarbrücken, Germany; | |
关键词: Network design; Network analysis; Pathway; Biocatalysis; Multi-enzyme catalysis; Mixed-integer linear program; Path-finding; Side reactions; Thermodynamics; Synthetic biology; | |
DOI : 10.1186/s12859-017-1773-y | |
received in 2017-04-12, accepted in 2017-07-30, 发布年份 2017 | |
来源: Springer | |
【 摘 要 】
BackgroundAs more and more biological reaction data become available, the full exploration of the enzymatic potential for the synthesis of valuable products opens up exciting new opportunities but is becoming increasingly complex. The manual design of multi-step biosynthesis routes involving enzymes from different organisms is very challenging. To harness the full enzymatic potential, we developed a computational tool for the directed design of biosynthetic production pathways for multi-step catalysis with in vitro enzyme cascades, cell hydrolysates and permeabilized cells.ResultsWe present a method which encompasses the reconstruction of a genome-scale pan-organism metabolic network, path-finding and the ranking of the resulting pathway candidates for proposing suitable synthesis pathways. The network is based on reaction and reaction pair data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the thermodynamics calculator eQuilibrator. The pan-organism network is especially useful for finding the most suitable pathway to a target metabolite from a thermodynamic or economic standpoint. However, our method can be used with any network reconstruction, e.g. for a specific organism. We implemented a path-finding algorithm based on a mixed-integer linear program (MILP) which takes into account both topology and stoichiometry of the underlying network. Unlike other methods we do not specify a single starting metabolite, but our algorithm searches for pathways starting from arbitrary start metabolites to a target product of interest. Using a set of biochemical ranking criteria including pathway length, thermodynamics and other biological characteristics such as number of heterologous enzymes or cofactor requirement, it is possible to obtain well-designed meaningful pathway alternatives. In addition, a thermodynamic profile, the overall reactant balance and potential side reactions as well as an SBML file for visualization are generated for each pathway alternative.ConclusionWe present an in silico tool for the design of multi-enzyme biosynthetic production pathways starting from a pan-organism network. The method is highly customizable and each module can be adapted to the focus of the project at hand. This method is directly applicable for (i) in vitro enzyme cascades, (ii) cell hydrolysates and (iii) permeabilized cells.
【 授权许可】
CC BY
© The Author(s) 2017
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311091226603ZK.pdf | 1507KB | download | |
12864_2016_3353_Article_IEq8.gif | 1KB | Image | download |
12906_2017_1593_Article_IEq20.gif | 1KB | Image | download |
12864_2017_3669_Article_IEq2.gif | 1KB | Image | download |
12906_2017_1593_Article_IEq25.gif | 1KB | Image | download |
12864_2017_3669_Article_IEq4.gif | 1KB | Image | download |
12864_2017_3669_Article_IEq5.gif | 1KB | Image | download |
12864_2017_3733_Article_IEq13.gif | 1KB | Image | download |
12864_2016_3105_Article_IEq15.gif | 1KB | Image | download |
12864_2017_3547_Article_IEq1.gif | 1KB | Image | download |
12864_2017_3487_Article_IEq14.gif | 1KB | Image | download |
12864_2017_3487_Article_IEq15.gif | 1KB | Image | download |
12864_2017_3733_Article_IEq17.gif | 1KB | Image | download |
12864_2017_4004_Article_IEq12.gif | 1KB | Image | download |
12864_2017_4004_Article_IEq14.gif | 1KB | Image | download |
12864_2017_4004_Article_IEq15.gif | 1KB | Image | download |
12864_2017_3487_Article_IEq18.gif | 1KB | Image | download |
12864_2017_3487_Article_IEq19.gif | 1KB | Image | download |
12864_2017_3487_Article_IEq21.gif | 1KB | Image | download |
12864_2017_4030_Article_IEq30.gif | 1KB | Image | download |
12864_2016_2913_Article_IEq17.gif | 1KB | Image | download |
12864_2016_3353_Article_IEq26.gif | 1KB | Image | download |
【 图 表 】
12864_2016_3353_Article_IEq26.gif
12864_2016_2913_Article_IEq17.gif
12864_2017_4030_Article_IEq30.gif
12864_2017_3487_Article_IEq21.gif
12864_2017_3487_Article_IEq19.gif
12864_2017_3487_Article_IEq18.gif
12864_2017_4004_Article_IEq15.gif
12864_2017_4004_Article_IEq14.gif
12864_2017_4004_Article_IEq12.gif
12864_2017_3733_Article_IEq17.gif
12864_2017_3487_Article_IEq15.gif
12864_2017_3487_Article_IEq14.gif
12864_2017_3547_Article_IEq1.gif
12864_2016_3105_Article_IEq15.gif
12864_2017_3733_Article_IEq13.gif
12864_2017_3669_Article_IEq5.gif
12864_2017_3669_Article_IEq4.gif
12906_2017_1593_Article_IEq25.gif
12864_2017_3669_Article_IEq2.gif
12906_2017_1593_Article_IEq20.gif
12864_2016_3353_Article_IEq8.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]