Microbial Cell Factories | |
Butanol production under microaerobic conditions with a symbiotic system of Clostridiumacetobutylicum and Bacillus cereus | |
Research | |
Gehua Wang1  Pengfei Wu1  Genyu Wang1  Hongjuan Liu1  Jianan Zhang1  Børre Tore Børresen2  | |
[1] Institute of Nuclear and New Energy Technology, Tsinghua University, 100084, Beijing, People’s Republic of China;Statoil Petroleum AS, 4035, Stavanger, Norway; | |
关键词: ABE fermentation; Symbiotic system; Clostridium acetobutylicum; Bacillus cereus; Oxygen; | |
DOI : 10.1186/s12934-016-0412-z | |
received in 2015-09-28, accepted in 2016-01-05, 发布年份 2016 | |
来源: Springer | |
【 摘 要 】
BackgroundOne major problem of ABE (acetone, butanol and ethanol) fermentation is high oxygen sensitivity of Clostridium acetobutylicum. Currently, no single strain has been isolated or genetically engineered to produce butanol effectively under aerobic conditions. In our previous work, a symbiotic system TSH06 has been developed successfully by our group, and two strains, C. acetobutylicum TSH1 and Bacillus cereus TSH2, were isolated from TSH06.ResultsCompared with single culture, TSH06 showed promotion on cell growth and solvent accumulation under microaerobic conditions. To simulate TSH06, a new symbiotic system was successfully re-constructed by adding living cells of B. cereus TSH2 into C. acetobutylicum TSH1 cultures. During the fermentation process, the function of B. cereus TSH2 was found to deplete oxygen and provide anaerobic environment for C. acetobutylicum TSH1. Furthermore, inoculation ratio of C. acetobutylicum TSH1 and B. cereus TSH2 affected butanol production. In a batch fermentation with optimized inoculation ratio of 5 % C. acetobutylicum TSH1 and 0.5 % B. cereus TSH2, 11.0 g/L butanol and 18.1 g/L ABE were produced under microaerobic static condition. In contrast to the single culture of C. acetobutylicum TSH1, the symbiotic system became more aerotolerant and was able to produce 11.2 g/L butanol in a 5 L bioreactor even with continuous 0.15 L/min air sparging. In addition, qPCR assay demonstrated that the abundance of B. cereus TSH2 increased quickly at first and then decreased sharply to lower than 1 %, whereas C. acetobutylicum TSH1 accounted for more than 99 % of the whole population in solventogenic phase.ConclusionsThe characterization of a novel symbiotic system on butanol fermentation was studied. The new symbiotic system re-constructed by co-culture of C. acetobutylicum TSH1 and B. cereus TSH2 showed excellent performance on butanol production under microaerobic conditions. B. cereus TSH2 was a good partner for C. acetobutylicum TSH1 by providing an anaerobic environment. During fermentation process, the high ratio of Clostridium and low ratio of Bacillus composition indicated that this symbiotic system was an effective and easily controlled cultivation model for ABE fermentation under microaerobic conditions.
【 授权许可】
CC BY
© Wu et al. 2016
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311102647458ZK.pdf | 1594KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]