期刊论文详细信息
BMC Microbiology
The role of the RNA chaperone Hfq in Haemophilus influenzae pathogenesis
Research Article
Daniel J Morton1  Paul W Whitby1  Thomas W Seale1  Terrence L Stull2  Randy J Hempel2 
[1] Department of Pediatrics, University of Oklahoma Health Sciences Center, 73104, Oklahoma City, OK, USA;Department of Pediatrics, University of Oklahoma Health Sciences Center, 73104, Oklahoma City, OK, USA;Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, 73104, Oklahoma City, OK, USA;
关键词: Haemophilus;    Hfq;    Pathogenesis;    Otitis media;    Bacteremia;   
DOI  :  10.1186/1471-2180-13-134
 received in 2013-03-28, accepted in 2013-06-14,  发布年份 2013
来源: Springer
PDF
【 摘 要 】

BackgroundThe RNA binding protein Hfq of Haemophilus influenzae is highly homologous to Hfq from other bacterial species. In many of these other bacteria, Hfq affects the expression of a broad range of genes and enhances the ability to respond to stressful environments. However, the role of Hfq in H. influenzae is unknown.ResultsDeletion mutants of hfq were generated in the nontypeable H. influenzae strains R2866 and 86-028NP to assess the role of Hfq in these well characterized but genotypically and phenotypically divergent clinical isolates. A deletion mutation of hfq had no effect on growth of H. influenzae in nutrient rich media and had no effect on survival in several stressful conditions in vitro. However, the mutation resulted in a reduced ability to utilize heme from hemoglobin. The mutant and wild type strains were assessed for virulence and competitive fitness in models of invasive disease and otitis media. In the chinchilla model of otitis media, the hfq mutant of 86-028NP exhibited impaired competitive fitness when compared to its wild type progenitor but exhibited no apparent defect in virulence. In the infant rat model, deletion of hfq in R2866 resulted in reduced bacterial titers in blood and a shorter duration of infection when compared to the wild type strain in the competitive fitness study.ConclusionWe conclude that Hfq is involved in the utilization of essential nutrients and facilitates infection by H. influenzae.

【 授权许可】

Unknown   
© Hempel et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311102310235ZK.pdf 845KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  文献评价指标  
  下载次数:2次 浏览次数:1次