期刊论文详细信息
BMC Plant Biology
Flavonoid supplementation affects the expression of genes involved in cell wall formation and lignification metabolism and increases sugar content and saccharification in the fast-growing eucalyptus hybrid E. urophylla x E. grandis
Research Article
Jorge Lepikson-Neto1  Wesley L Marques1  Paulo J Teixeira1  Ana C Deckmann1  Leandro C Nascimento1  Gonçalo AG Pereira1  Marcela M Salazar1  Eduardo LO Camargo1  Piotr Mieczkowski2  João PF Cairo3  Fabio M Squina3 
[1] Departamento de Genética e Evolução, Laboratório de Genômica e Expressão, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil;Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill (UNC), Chapel Hill, NC, USA;Laboratório Nacional de Ciência e Tecnologia do Bioetanol, CTBE, Campinas, São Paulo, Brazil;
关键词: Eucalyptus;    Lignin;    Phenylpropanoid metabolism;    Syringyl/guaiacyl ratio;    Gene expression;    Hydrolysis;    Stress;   
DOI  :  10.1186/s12870-014-0301-8
 received in 2014-05-22, accepted in 2014-10-22,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundEucalyptus species are the most widely planted hardwood species in the world and are renowned for their rapid growth and adaptability. In Brazil, one of the most widely grown Eucalyptus cultivars is the fast-growing Eucalyptus urophylla x Eucalyptus grandis hybrid. In a previous study, we described a chemical characterization of these hybrids when subjected to flavonoid supplementation on 2 distinct timetables, and our results revealed marked differences between the wood composition of the treated and untreated trees.ResultsIn this work, we report the transcriptional responses occurring in these trees that may be related to the observed chemical differences. Gene expression was analysed through mRNA-sequencing, and notably, compared to control trees, the treated trees display differential down-regulation of cell wall formation pathways such as phenylpropanoid metabolism as well as differential expression of genes involved in sucrose, starch and minor CHO metabolism and genes that play a role in several stress and environmental responses. We also performed enzymatic hydrolysis of wood samples from the different treatments, and the results indicated higher sugar contents and glucose yields in the flavonoid-treated plants.ConclusionsOur results further illustrate the potential use of flavonoids as a nutritional complement for modifying Eucalyptus wood, since, supplementation with flavonoids alters its chemical composition, gene expression and increases saccharification probably as part of a stress response.

【 授权许可】

Unknown   
© Lepikson-Neto et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311101767032ZK.pdf 1516KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  文献评价指标  
  下载次数:0次 浏览次数:0次