期刊论文详细信息
BMC Evolutionary Biology
DHCR7 mutations linked to higher vitamin D status allowed early human migration to Northern latitudes
Research Article
Elina Hyppönen1  Valerie Kuan2  Adrian R Martineau2  Chris J Griffiths2  Robert Walton2 
[1] MRC Centre of Epidemiology for Child Health and Centre for Paediatric Epidemiology and Biostatistics, UCL Institute of Child Health, 30 Guildford Street, WC1N 1EH, London, UK;School of Population Health, University of South Australia, Adelaide, Australia;Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 58 Turner Street, E1 2AB, London, UK;
关键词: Evolutionary selection;    Vitamin D;    DHCR7;    Fixation index;    Long range haplotype test;   
DOI  :  10.1186/1471-2148-13-144
 received in 2013-05-28, accepted in 2013-07-04,  发布年份 2013
来源: Springer
PDF
【 摘 要 】

BackgroundVitamin D is essential for a wide range of physiological processes including immune function and calcium homeostasis. Recent investigations have identified candidate genes which are strongly linked to concentrations of 25-hydroxyvitamin D. Since there is insufficient UVB radiation to induce year-round cutaneous synthesis of vitamin D at latitudes distant from the equator it is likely that these genes were subject to forces of natural selection. We used the fixation index (FST) to measure differences in allele frequencies in 993 individuals from ten populations to identify the presence of evolutionary selection in genes in the vitamin D pathway. We then explored the length of haplotypes in chromosomes to confirm recent positive selection.ResultsWe find evidence of positive selection for DHCR7, which governs availability of 7-dehydrocholesterol for conversion to vitamin D3 by the action of sunlight on the skin. We show that extended haplotypes related to vitamin D status are highly prevalent at Northern latitudes (Europe 0.72, Northeast Asia 0.41). The common DHCR7 haplotype underwent a recent selective sweep in Northeast Asia, with relative extended haplotype homozygosity of 5.03 (99th percentile). In contrast, CYP2R1, which 25-hydroxylates vitamin D, is under balancing selection and we found no evidence of recent selection pressure on GC, which is responsible for vitamin D transport.ConclusionsOur results suggest that genetic variation in DHCR7 is the major adaptation affecting vitamin D metabolism in recent evolutionary history which helped early humans to avoid severe vitamin D deficiency and enabled them to inhabit areas further from the equator.

【 授权许可】

CC BY   
© Kuan et al.; licensee BioMed Central Ltd. 2013

【 预 览 】
附件列表
Files Size Format View
RO202311101149194ZK.pdf 1286KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  文献评价指标  
  下载次数:0次 浏览次数:0次