BMC Evolutionary Biology | |
DHCR7 mutations linked to higher vitamin D status allowed early human migration to Northern latitudes | |
Robert Walton1  Elina Hyppönen2  Chris J Griffiths1  Adrian R Martineau1  Valerie Kuan1  | |
[1] Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, 58 Turner Street, London E1 2AB, UK;School of Population Health, University of South Australia, Adelaide, Australia | |
关键词: Long range haplotype test; Fixation index; DHCR7; Vitamin D; Evolutionary selection; | |
Others : 1086869 DOI : 10.1186/1471-2148-13-144 |
|
received in 2013-05-28, accepted in 2013-07-04, 发布年份 2013 | |
【 摘 要 】
Background
Vitamin D is essential for a wide range of physiological processes including immune function and calcium homeostasis. Recent investigations have identified candidate genes which are strongly linked to concentrations of 25-hydroxyvitamin D. Since there is insufficient UVB radiation to induce year-round cutaneous synthesis of vitamin D at latitudes distant from the equator it is likely that these genes were subject to forces of natural selection. We used the fixation index (FST) to measure differences in allele frequencies in 993 individuals from ten populations to identify the presence of evolutionary selection in genes in the vitamin D pathway. We then explored the length of haplotypes in chromosomes to confirm recent positive selection.
Results
We find evidence of positive selection for DHCR7, which governs availability of 7-dehydrocholesterol for conversion to vitamin D3 by the action of sunlight on the skin. We show that extended haplotypes related to vitamin D status are highly prevalent at Northern latitudes (Europe 0.72, Northeast Asia 0.41). The common DHCR7 haplotype underwent a recent selective sweep in Northeast Asia, with relative extended haplotype homozygosity of 5.03 (99th percentile). In contrast, CYP2R1, which 25-hydroxylates vitamin D, is under balancing selection and we found no evidence of recent selection pressure on GC, which is responsible for vitamin D transport.
Conclusions
Our results suggest that genetic variation in DHCR7 is the major adaptation affecting vitamin D metabolism in recent evolutionary history which helped early humans to avoid severe vitamin D deficiency and enabled them to inhabit areas further from the equator.
【 授权许可】
2013 Kuan et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150116020314506.pdf | 1804KB | download | |
Figure 3. | 78KB | Image | download |
Figure 2. | 357KB | Image | download |
20150220023502218.pdf | 2890KB | download |
【 图 表 】
Figure 2.
Figure 3.
【 参考文献 】
- [1]Holick MF: Vitamin D deficiency. N Engl J Med 2007, 357:266-281.
- [2]Arnaud J, Constans J: Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP). Hum Genet 1993, 92(2):183-188.
- [3]Clemens TL, Adams JS, Henderson SL, Holick MF: Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet 1982, 1:74-76.
- [4]MacLaughlin J, Holick MF: Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest 1985, 76:1536-1538.
- [5]Shea MK, Benjamin EJ, Dupuis J, Massaro JM, Jacques PF, D’Agostino RB Sr, Ordovas JM, O'Donnell CJ, Dawson-Hughes B, Vasan RS, Booth SL: Genetic and non-genetic correlates of vitamins K and D. Eur J Clin Nutr 2009, 63:458-464.
- [6]Snellman G, Melhus H, Gedeborg R, Olofsson S, Wolk A, Pedersen NL, Michaëlsson K: Seasonal genetic influence on serum 25-hydroxyvitamin D levels: a twin study. PLoS One 2009, 4:e7747.
- [7]Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, Kiel DP, Streeten EA, Ohlsson C, Koller DL, Peltonen L, Cooper JD, O’Reilly PF, Houston DK, Glazer NL, Vandenput L, Peacock M, Shi J, Rivadeneira F, McCarthy MI, Anneli P, de Boer IH, Mangino M, Kato B, Smyth DJ, Booth SL, Jacques PF, Burke GL, Goodarzi M, Cheung CL, et al.: Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet 2010, 376:180-188.
- [8]Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, Jacobs EJ, Ascherio A, Helzlsouer K, Jacobs KB, Li Q, Weinstein SJ, Purdue M, Virtamo J, Horst R, Wheeler W, Chanock S, Hunter DJ, Hayes RB, Kraft P, Albanes D: Genome-wide association study of circulating vitamin D levels. Hum Mol Genet 2010, 19:2739-2745.
- [9]Engelman CD, Meyers KJ, Ziegler JT, Taylor KD, Palmer ND, Haffner SM, Fingerlin TE, Wagenknecht LE, Rotter JI, Bowden DW, Langefeld CD, Norris JM: Genome-wide association study of vitamin D concentrations in Hispanic Americans: the IRAS family study. J Steroid Biochem Mol Biol 2010, 122:186-192.
- [10]Lasky-Su J, Lange N, Brehm JM, Damask A, Soto-Quiros M, Avila L, Celedón JC, Canino G, Cloutier MM, Hollis BW, Weiss ST, Litonjua AA: Genome-wide association analysis of circulating vitamin D levels in children with asthma. Hum Genet 2012, 131:1495-1505.
- [11]Bamshad M, Wooding SP: Signatures of natural selection in the human genome. Nat Rev Genet 2003, 4:99-111.
- [12]Sabeti PC, Schaffner SF, Fry B, Lohmueller J, Varilly P, Shamovsky O, Palma A, Mikkelsen TS, Altshuler D, Lander ES: Positive Natural Selection in the Human Lineage. Science 2006, 312:1614-1620.
- [13]Black WC 4th, Baer CF, Antolin MF, DuTeau NM: Population genomics: Genome-wide sampling of insect populations. Annu Rev Entomol 2001, 46:441-469.
- [14]Sabeti PC, Reich DE, Higgins JM, Levine HZ, Richter DJ, Schaffner SF, Gabriel SB, Platko JV, Patterson NJ, McDonald GJ, Ackerman HC, Campbell SJ, Altshuler D, Cooper R, Kwiatkowski D, Ward R, Lander ES: Detecting recent positive selection in the human genome from haplotype structure. Nature 2002, 419:832-837.
- [15]Kelley RI, Hennekam RCM: The Smith Lemli-Opitz syndrome. J Med Genet 2000, 37:321-335.
- [16]Opitz JM, Gilbert-Barness E, Ackerman J, Lowichik A: Cholesterol and development: the RSH (“Smith-Lemli-Opitz”) syndrome and related conditions. Pediat Path Molec Med 2002, 21:153-181.
- [17]Lerchbaum E, Obermayer-Pietsch B: Vitamin D and fertility: a systematic review. Eur J Endocrinol 2012, 166(5):765-778.
- [18]Kappelman J, Alçiçek MC, Kazanci N, Schultz M, Ozkul M, Sen S: First Homo erectus from Turkey and implications for migrations into temperate Eurasia. Am J Phys Anthropol 2008, 135(1):110-116.
- [19]Richards MP, Jacobi R, Cook J, Pettitt PB, Stringer CB: Isotope evidence for the intensive use of marine foods by Late Upper Paleolithic humans. J Hum Evol 2005, 49(3):390-394.
- [20]Richards MO, Hedges REM: Stable isotope evidence for similarities in the types of marine foods used by late Mesolithic humans at sites along the Atlantic coast of Europe. J Archaeol Sci 1999, 26:717-722.
- [21]Dobrovolskaya MV: Upper palaeolithic and late stone age human diet. J Physiol Anthropol Appl Human Sci 2005, 24(4):433-438.
- [22]Jablonski NG, Whitfort MJ, Roberts-Smith N, Qinqi X: The influence of life history and diet on the distribution of catarrhine primates during the Pleistocene in eastern Asia. J Hum Evol 2000, 39(2):131-157.
- [23]Liu L, Bestel S, Shi J, Song Y, Chen X: Paleolithic human exploitation of plant foods during the last glacial maximum in North China. Proc Natl Acad Sci USA 2013, 110(14):5380-5385.
- [24]Holick MF: The cutaneous photosynthesis of previtamin D3: a unique photoendocrine system. J Invest Dermatol 1981, 77(1):51-58.
- [25]Chen TC, Chimeh F, Lu Z, Mathieu J, Person KS, Zhang A, Kohn N, Martinello S, Berkowitz R, Holick MF: Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch Biochem Biophys 2007, 460(2):213-217.
- [26]Koch EM, Koch FC: The Provitamin D of the Covering Tissues of Chickens. Poult Sci 1941, 1:33-35.
- [27]Pal BR, Marshall T, James C, Shaw NJ: Distribution analysis of vitamin D highlights differences in population subgroups, preliminary observations from a pilot study in UK adults. J Endocrinol 2003, 179:119-129.
- [28]Stephens WP, Klimiuk PS, Berry JL, Mawer EB: Annual high-dose vitamin D prophylaxis in Asian immigrants. Lancet 1981, 28:1199-1202.
- [29]Harris SS, Dawson-Hughes B: Seasonal changes in plasma 25-hydroxyvitamin D concentrations of young American black and white women. Am J Clin Nutr 1998, 67:1232-1236.
- [30]Nesby-O’Dell S, Scanlon KS, Cogswell ME, Gillespie C, Hollis BW, Looker AC, Allen C, Doughertly C, Gunter EW, Bowman BA: Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: third national health and nutrition examination survey, 1988–1994. Am J Clin Nutr 2002, 76:187-192.
- [31]Izagirre N, Garcia I, Junquera C, de la Rua C, Alonso S: A scan for signatures of positive selection in candidate loci for skin pigmentation in humans. Mol Biol Evol 2006, 23:1697-1706.
- [32]Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, Schaffner SF, Lander ES, Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P, Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao Y, International HapMap Consortium, et al.: Genome-wide detection and characterization of positive selection in human populations. Nature 2007, 449(7164):913-918.
- [33]Norman AW: Sunlight, season, skin pigmentation, vitamin D, and 25-hydroxyvitamin D: integral component of vitamin D endocrine system. Am J Clin Nutr 1998, 67:1108-1110.
- [34]Ludwig MZ: Functional evolution of noncoding DNA. Curr Opin Genet Dev 2002, 12(6):634-639.
- [35]Cobb J, Büsst C, Petrou S, Harrap S, Ellis J: Searching for functional genetic variants in non-coding DNA. Clin Exp Pharmacol Physiol 2008, 35(4):372-375.
- [36]Sigmundsdottir H, Pan J, Debes GF, Alt C, Habtezion A, Soler D, Butcher EC: DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nat Immunol 2007, 8:285-293.
- [37]Cheng JB, Motola DL, Mangelsdorf DJ, Russell DW: De-orphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxylase. J Biol Chem 2003, 278(39):38084-38093.
- [38]The International HapMap Consortium: Integrating common and rare genetic variation in diverse human populations. Nature 2010, 467:52-58.
- [39]Beaumont MA, Nichols RA: Evaluating loci for use in the genetic analysis of population structure. Proc Biol Sci 1996, 263:1619-1626.
- [40]Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G: LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinforma 2008, 9:323. BioMed Central Full Text
- [41]Weir BS, Cockerham CC: Estimating F-statistics for the analysis of population structure. Evolution 1984, 38:1359-1270.
- [42]Akey JM, Zhang G, Zhang K, Jin L, Shriver MD: Interrogating a high-density SNP map for signatures of natural selection. Genome Res 2002, 12:1805-1814.
- [43]Nei M, Chesser RK: Estimation of fixation indices and gene diversities. Ann Hum Genet 1983, 47:253-259.
- [44]Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, Altshuler D: The structure of haplotype blocks in the human genome. Science 2002, 296:2225-2229.
- [45]Barrett JC, Fry B, Maller J, Daly MJ: Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21(2):263-265.
- [46]Hyppönen E, Turner S, Cumberland P, Power C, Gibb I: Serum 25-hydroxyvitamin D measurement in a large population survey with statistical harmonization of assay variation to an international standard. J Clin Endocrinol Metab 2007, 92:4615-4622.
- [47]Sawcer S, Hellenthal G, Pirinen M, Spencer CC, Patsopoulos NA, Moutsianas L, Dilthey A, Su Z, Freeman C, Hunt SE, Edkins S, Gray E, Booth DR, Potter SC, Goris A, Band G, Oturai AB, Strange A, Saarela J, Bellenguez C, Fontaine B, Gillman M, Hemmer B, Gwilliam R, Zipp F, Jayakumar A, Martin R, Leslie S, Hawkins S, Giannoulatou E, et al.: Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature 2011, 476:214-219.
- [48]Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, Julier C, Morahan G, Nerup J, Nierras C, Plagnol V, Pociot F, Schuilenburg H, Smyth DJ, Stevens H, Todd JA, Walker NM, Rich SS, Type 1 Diabetes Genetics Consortium: Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009, 41(6):703-707.