Malaria Journal | |
Functional analysis of Plasmodium falciparum subpopulations associated with artemisinin resistance in Cambodia | |
Research | |
Roger Frutos1  Sylvain Milanesi2  Daniel B. Roche3  Emmanuel Cornillot4  Ankit Dwivedi5  Eric Rivals6  Maxim Hebrard7  Axel Kuehn8  Jacques Colinge8  Christelle Reynes9  Nimol Khim1,10  Didier Menard1,11  Choukri Ben Mamoun1,12  | |
[1] CIRAD, UMR Intertryp, 34398, Montpellier, France;IES, UMR 5214, Université de Montpellier, CNRS, 34095, Montpellier, France;Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France;Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France;Centre de Recherche en Biologie cellulaire de Montpellier, CNRS-UMR 5237, 34293, Montpellier, France;Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France;Institut de Recherche en Cancérologie de Montpellier, Institut régional du Cancer Montpellier & Université de Montpellier, IRCM-INSERM U1194, 34298, Montpellier, France;Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France;Institut de Recherche en Cancérologie de Montpellier, Institut régional du Cancer Montpellier & Université de Montpellier, IRCM-INSERM U1194, 34298, Montpellier, France;Institute for Genome Sciences, University of Maryland School of Medicine, 21201, Baltimore, MD, USA;Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France;Laboratoire d’informatique, de robotique et de microélectronique de Montpellier, LIRMM, CNRS, Université de Montpellier, 34095, Montpellier, France;Institut de Biologie Computationnelle (IBC), 34095, Montpellier, France;Laboratoire d’informatique, de robotique et de microélectronique de Montpellier, LIRMM, CNRS, Université de Montpellier, 34095, Montpellier, France;Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa, Japan;Institut de Recherche en Cancérologie de Montpellier, Institut régional du Cancer Montpellier & Université de Montpellier, IRCM-INSERM U1194, 34298, Montpellier, France;Laboratoire de Biostatistiques, Informatique et Physique Pharmaceutique, UFR Pharmacie, Université de Montpellier, 34093, Montpellier, France;Institut de Génomique Fonctionnelle-CNRS, 34094, Montpellier, France;Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia;Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia;Biology of Host-Parasite Interactions Unit, Institut Pasteur, Paris, France;Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, 06520, New Haven, CT, USA; | |
关键词: Plasmodium falciparum; Malaria; Cambodia; Artemisinin resistance; k13; Population fragmentation; Admixed subpopulations; Network based stratification; Shifting balance theory; Redox metabolism; | |
DOI : 10.1186/s12936-017-2140-1 | |
received in 2017-07-11, accepted in 2017-12-12, 发布年份 2017 | |
来源: Springer | |
【 摘 要 】
BackgroundPlasmodium falciparum malaria is one of the most widespread parasitic infections in humans and remains a leading global health concern. Malaria elimination efforts are threatened by the emergence and spread of resistance to artemisinin-based combination therapy, the first-line treatment of malaria. Promising molecular markers and pathways associated with artemisinin drug resistance have been identified, but the underlying molecular mechanisms of resistance remains unknown. The genomic data from early period of emergence of artemisinin resistance (2008–2011) was evaluated, with aim to define k13 associated genetic background in Cambodia, the country identified as epicentre of anti-malarial drug resistance, through characterization of 167 parasite isolates using a panel of 21,257 SNPs.ResultsEight subpopulations were identified suggesting a process of acquisition of artemisinin resistance consistent with an emergence-selection-diffusion model, supported by the shifting balance theory. Identification of population specific mutations facilitated the characterization of a core set of 57 background genes associated with artemisinin resistance and associated pathways. The analysis indicates that the background of artemisinin resistance was not acquired after drug pressure, rather is the result of fixation followed by selection on the daughter subpopulations derived from the ancestral population.ConclusionsFunctional analysis of artemisinin resistance subpopulations illustrates the strong interplay between ubiquitination and cell division or differentiation in artemisinin resistant parasites. The relationship of these pathways with the P. falciparum resistant subpopulation and presence of drug resistance markers in addition to k13, highlights the major role of admixed parasite population in the diffusion of artemisinin resistant background. The diffusion of resistant genes in the Cambodian admixed population after selection resulted from mating of gametocytes of sensitive and resistant parasite populations.
【 授权许可】
CC BY
© The Author(s) 2017
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311100835832ZK.pdf | 2275KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]