期刊论文详细信息
BMC Plant Biology
Identifying variation in resistance to the take-all fungus, Gaeumannomyces graminis var. tritici, between different ancestral and modern wheat species
Research Article
Richard J Gutteridge1  Vanessa E McMillan1  Kim E Hammond-Kosack1 
[1] Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, AL5 2JQ, Herts, UK;
关键词: Diversity array technology;    Disease resistance in wheat roots;    Gaeumannomyces graminis;    Soil-borne fungal pathogen;    Take-all disease;    Triticum monococcum;   
DOI  :  10.1186/s12870-014-0212-8
 received in 2014-05-09, accepted in 2014-07-24,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundAncestral wheat relatives are important sources of genetic diversity for the introduction of novel traits for the improvement of modern bread wheat. In this study the aim was to assess the susceptibility of 34 accessions of the diploid wheat Triticum monococcum (A genome) to Gaeumannomyces graminis var. tritici (Ggt), the causal agent of take-all disease. The second aim was to explore the susceptibility of tetraploid wheat (T. durum) and the B genome progenitor species Aegilops speltoides to Ggt.ResultsField trials, conducted over 5 years, identified seven T. monococcum accessions with a good level of resistance to take-all when exposed to natural inoculum under UK field conditions. All other accessions were highly susceptible or did not exhibit a consistent phenotype across years. DArT marker genotyping revealed that whole genome diversity was not closely related to resistance to take-all within T. monococcum, suggesting that multiple genetic sources of resistance may exist within the species. In contrast the tetraploid wheat cultivars and Ae. speltoides were all highly susceptible to the disease, including those with known elevated levels of benzoxazinoids.ConclusionsThe diploid wheat species T. monococcum may provide a genetic source of resistance to take-all disease that could be utilised to improve the performance of T. aestivum in high disease risk situations. This represents an extremely valuable resource to achieve economic and sustainable genetic control of this root disease.

【 授权许可】

Unknown   
© McMillan et al. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311100785861ZK.pdf 817KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  文献评价指标  
  下载次数:1次 浏览次数:0次