期刊论文详细信息
BMC Bioinformatics
disperseNN2: a neural network for estimating dispersal distance from georeferenced polymorphism data
Software
Chris C. R. Smith1  Andrew D. Kern1 
[1] Institute of Ecology and Evolution, University of Oregon, 97403, Eugene, OR, USA;
关键词: Dispersal;    Population genetics;    Machine learning;    Demographic inference;    Spatial;    Geography;   
DOI  :  10.1186/s12859-023-05522-7
 received in 2023-08-20, accepted in 2023-10-05,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Spatial genetic variation is shaped in part by an organism’s dispersal ability. We present a deep learning tool, disperseNN2, for estimating the mean per-generation dispersal distance from georeferenced polymorphism data. Our neural network performs feature extraction on pairs of genotypes, and uses the geographic information that comes with each sample. These attributes led disperseNN2 to outperform a state-of-the-art deep learning method that does not use explicit spatial information: the mean relative absolute error was reduced by 33% and 48% using sample sizes of 10 and 100 individuals, respectively. disperseNN2 is particularly useful for non-model organisms or systems with sparse genomic resources, as it uses unphased, single nucleotide polymorphisms as its input. The software is open source and available from https://github.com/kr-colab/disperseNN2, with documentation located at https://dispersenn2.readthedocs.io/en/latest/.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202311100198823ZK.pdf 1012KB PDF download
Fig. 10 427KB Image download
MediaObjects/12951_2022_1747_MOESM1_ESM.pdf 1907KB PDF download
Fig. 9 45KB Image download
Fig. 2 937KB Image download
Fig. 4 2368KB Image download
12867_2016_60_Article_IEq1.gif 2KB Image download
12936_2017_2014_Article_IEq78.gif 1KB Image download
12951_2015_155_Article_IEq4.gif 1KB Image download
Fig. 1 5136KB Image download
Fig. 6 1766KB Image download
Fig. 3 595KB Image download
Fig. 3 1801KB Image download
Fig. 3 313KB Image download
MediaObjects/13046_2023_2865_MOESM7_ESM.tif 1295KB Other download
Fig. 4 1482KB Image download
Fig. 1 395KB Image download
350KB Image download
Fig. 4 463KB Image download
Fig. 9 519KB Image download
Fig. 9 217KB Image download
Fig. 1 205KB Image download
40517_2023_273_Article_IEq4.gif 1KB Image download
MediaObjects/40249_2023_1146_MOESM1_ESM.png 4112KB Other download
40517_2023_273_Article_IEq6.gif 1KB Image download
Fig. 2 679KB Image download
MediaObjects/41408_2023_929_MOESM1_ESM.pdf 265KB PDF download
MediaObjects/40517_2023_273_MOESM1_ESM.xlsx 103KB Other download
MediaObjects/13046_2023_2865_MOESM10_ESM.jpg 226KB Other download
Fig. 1 420KB Image download
Fig. 2 204KB Image download
Fig. 3 707KB Image download
Fig. 1 174KB Image download
MediaObjects/13046_2023_2820_MOESM4_ESM.xlsx 9KB Other download
MediaObjects/13046_2023_2820_MOESM6_ESM.pptx 1638KB Other download
Fig. 4 1966KB Image download
Fig. 2 2010KB Image download
Fig. 2 240KB Image download
Fig. 1 740KB Image download
MediaObjects/13068_2023_2401_MOESM2_ESM.docx 163KB Other download
Fig. 2 467KB Image download
【 图 表 】

Fig. 2

Fig. 1

Fig. 2

Fig. 2

Fig. 4

Fig. 1

Fig. 3

Fig. 2

Fig. 1

Fig. 2

40517_2023_273_Article_IEq6.gif

40517_2023_273_Article_IEq4.gif

Fig. 1

Fig. 9

Fig. 9

Fig. 4

Fig. 1

Fig. 4

Fig. 3

Fig. 3

Fig. 3

Fig. 6

Fig. 1

12951_2015_155_Article_IEq4.gif

12936_2017_2014_Article_IEq78.gif

12867_2016_60_Article_IEq1.gif

Fig. 4

Fig. 2

Fig. 9

Fig. 10

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  文献评价指标  
  下载次数:7次 浏览次数:0次