
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Smith and Kern ﻿BMC Bioinformatics (2023) 24:385
https://doi.org/10.1186/s12859-023-05522-7

BMC Bioinformatics

disperseNN2: a neural network
for estimating dispersal distance
from georeferenced polymorphism data
Chris C. R. Smith1* and Andrew D. Kern1 

Abstract 

Spatial genetic variation is shaped in part by an organism’s dispersal ability. We present
a deep learning tool, disperseNN2, for estimating the mean per-generation disper-
sal distance from georeferenced polymorphism data. Our neural network performs fea-
ture extraction on pairs of genotypes, and uses the geographic information that comes
with each sample. These attributes led disperseNN2 to outperform a state-of-the-
art deep learning method that does not use explicit spatial information: the mean
relative absolute error was reduced by 33% and 48% using sample sizes of 10 and 100
individuals, respectively. disperseNN2 is particularly useful for non-model organ-
isms or systems with sparse genomic resources, as it uses unphased, single nucleotide
polymorphisms as its input. The software is open source and available from https://​
github.​com/​kr-​colab/​dispe​rseNN2, with documentation located at https://​dispe​rsenn2.​
readt​hedocs.​io/​en/​latest/.

Keywords:  Dispersal, Population genetics, Machine learning, Demographic inference,
Spatial, Geography

Background
The per-generation dispersal distance of an organism is a critical variable for the man-
agement of endangered and invasive species, understanding range shifts under climate
change, and studying vectors of human disease [1–3]. A potent source of information
that may be used to estimate this ecologically-relevant parameter is population genetic
data that are geographically distributed. Accordingly, numerous methods to perform
dispersal estimation have been proffered in the literature. For example, [4] presented
a formula that estimates neighborhood size from the slope of the least squares fit of
genetic distance against geographic distance. Dispersal rate can in turn be calculated
from neighborhood size if the population density is also known. Rousset’s approach is
currently the most widely used genetic-based method because it can be used with poly-
morphism data like short sequence repeats or single nucleotide polymorphisms (SNPs).
Other dispersal estimation methods require very high-depth sequencing combined
with statistical inference to obtain the necessary input data types. In particular, [5, 6]

*Correspondence:
chriscs@uoregon.edu

1 Institute of Ecology
and Evolution, University
of Oregon, Eugene, OR 97403,
USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-023-05522-7&domain=pdf
https://github.com/kr-colab/disperseNN2
https://github.com/kr-colab/disperseNN2
https://dispersenn2.readthedocs.io/en/latest/
https://dispersenn2.readthedocs.io/en/latest/

Page 2 of 7Smith and Kern ﻿BMC Bioinformatics (2023) 24:385

estimate dispersal rate using identity-by-descent blocks and genome wide inferred gene-
alogies, respectively, and demonstrate their methods on taxa with exceptional genomic
resources: humans and Arabidopsis. While approaches for inferring the latter data types
are continually improving, they are still unavailable for most species.

We previously presented a deep learning tool, called disperseNN, that estimates dis-
persal rate using input data that are accessible even for some non-model species, SNPs,
and that performs as well or better than existing methods [7]. Notably our previous
method relied only on population genetic variation and the width of the sampling area;
it did not utilize the spatial coordinates of individuals. In the current study, we present
an improved neural network architecture, called disperseNN2, that explicitly uses
geographic information and provides substantial performance gains over disperseNN,
which was already more accurate than previous methods for small sample sizes.

Implementation
Overview

The disperseNN2 program uses a deep neural network trained on simulated data to
infer the mean, per-generation parent-offspring distance. Specifically, we aim to infer
σ , the root-mean-square displacement along a given axis between a randomly chosen
child and one of their parents chosen at random [4, 5]. disperseNN2 is designed for
SNP data obtained from reduced representation or whole genome sequencing, with
either short-range or full linkage information. Because the model is trained on simulated
data, the general workflow requires generating training datasets that accurately reflect
the empirical genotypes of interest. While the neural network model has diverged sub-
stantially and is described below in detail, the general approach and analysis workflow
are similar to [7]. The disperseNN2 documentation includes complete instructions,
example commands for the analysis workflow, and a number of usage vignettes (https://​
dispe​rsenn2.​readt​hedocs.​io/​en/​latest/).

Network architecture

disperseNN2 uses a pairwise convolutional network that performs feature extraction
on pairs of individuals at a time (Fig. 1). The first part of the model, which we refer to
as “the extractor”, extracts pertinent information from pairs of genotypes, and merges
the extracted features from all combinatorial pairs into a summary table for downstream
processing. The latter part of the model uses the extracted data from many sample-pairs
to predict σ . This strategy allows us to convey spatial information to the network, which
is accomplished by attaching the geographic distance between each sample-pair directly
to the genotype summaries from the corresponding pair.

The first input to disperseNN2 is a genotype matrix consisting of minor allele
counts (0 s, 1 s, and 2 s) for m SNPs, ordered by genomic position, from n individuals.
The program has the option to use unphased or phased genotypes; if phased, there are
two genotypes (0 s or 1 s) per individual. However, rather than show the full genotype

matrix to the network, we loop through all n
2

 pairs of individuals and sub-set the gen-

otypes of each pair. Feature extraction is then performed independently on each pair

https://dispersenn2.readthedocs.io/en/latest/
https://dispersenn2.readthedocs.io/en/latest/

Page 3 of 7Smith and Kern ﻿BMC Bioinformatics (2023) 24:385 	

using convolution and pooling, where the convolution kernel spans two SNPs and each
pooling step averages ten SNPs.

The second input is a table of geographic coordinates for the sample locations. As with
the genotypes, the x and y coordinates are sub-set for each sample-pair. The Euclidean
distance is calculated between the individuals within each pair and concatenated with
the convolved genotype information for the pair. Last, the concatenated features are put
through a fully connected layer, resulting in a vector of information gleaned from the
pair. Weights are shared across all sample-pairs in the extractor.

After performing feature extraction on each pair of individuals, the features from all
pairs are stacked together, and a final, fully connected layer with a single filter and linear
activation is used to produce an estimate for σ . All other layers with trainable weights
include rectified linear unit activation functions.

By default the network uses all combinatorial pairs of samples. However, GPU mem-
ory might become limiting with larger sample sizes. For example, with n = 100 there are
4950 sample-pairs. While one solution might be to omit some pairs from the analysis

Fig. 1  (A Neural network schematic) From left to right: a pair of individuals is selected for the
feature-extraction step—this will be repeated for kextract pairs. The genotype matrix shows the genotypes
for the pair. Cream colored tensors are the output from convolution layers. The blue box over the genotypes
shows the convolution kernel for the first layer. Red tensors are the output from pooling layers. The spatial
coordinates for the current pair are subsetted from the locations table (Input 2). The Euclidean distance
is concatenated with the flattened convolution output. Green tensors are the output from flattening,
concatenating, or dense layers. The extractor is repeated for kextract different pairs of individuals, and
the resulting features are concatenated together. The dimensions noted beneath each tensor will vary
depending on the input size; this example uses 5000 SNPs (although the image of the genotypes shows a
smaller number of SNPs). The visualized size of each tensor is proportional to the square root of the actual
dimensions. Neural network images were generated using PlotNeuralNet (https://​github.​com/​Haris​
Iqbal​88/​PlotN​eural​Net). (B Box plots) Also shown are validation results using Rousset’s method (dark grey),
disperseNN (light grey), and disperseNN2 (white), with two different sample sizes. Outliers are
excluded

https://github.com/HarisIqbal88/PlotNeuralNet
https://github.com/HarisIqbal88/PlotNeuralNet

Page 4 of 7Smith and Kern ﻿BMC Bioinformatics (2023) 24:385

entirely, we instead exclude a number of pairs from the optimization of certain model
parameters. Specifically, disperseNN2 has the option to stop some pairs from con-
tributing to the calculation of the gradient with respect to the weights in the extractor.
Under this strategy, a smaller number of randomly chosen pairs, kextract , are used to
optimize the extractor’s weights, which reduces memory demands appreciably. Mean-
while, features are still extracted from the full set of pairs during the forward pass, and
all pairs help optimize the weights in the latter half of the network. In our validation
analysis (see below) with n = 100 , memory usage decreased linearly from 95.7 Gb with
kextract = 4950 to 12.0 Gb with kextract = 100 (Gb= 0.017kextract + 11.0 ). The ideal value
for kextract will likely depend on the total number of pairs, the number of SNPs, the batch
size, and available memory. Tensorflow [8] and Keras (https://​github.​com/​keras-​team/​
keras) libraries were used to develop disperseNN2.

Generating training data

To use disperseNN2, researchers must simulate training datasets that are tailored to
the study system. In particular, producing training data requires deciding on training
distributions for dispersal rate and other parameters. Some other values that are relevant
to dispersal inference, i.e. nuisance parameters, include population density, demographic
history, and the shape and size of the species distribution [7]. Choices for these simula-
tion settings will depend on the information available for each unique species or popula-
tion, and if misspecified will increase error in dispersal predictions. However, the model
may be trained to ignore certain nuisance parameters by varying them among the train-
ing simulations [7]. Recent developments, namely the programs SLiM [9] and slendR
[10], make it feasible to simulate genomes in continuous space. The disperseNN2
repository includes a SLiM script that may serve as a template for new simulations, and
the SLiM manual includes general information for designing spatial simulations.

Analysis

The disperseNN2 software includes tools for pre-processing training datasets, making
it easy for practitioners to turn tree sequences (e.g., SLiM output) into disperseNN2
input. Specifically, a sample of individuals is taken from the final generation of each sim-
ulation, and their genotypes and locations—inputs to the neural network—are saved in
binary format to improve training efficiency. To mirror the empirical sampling scheme,
individuals are chosen from simulations that are closest to the empirical sample locali-
ties, after projecting the empirical latitude and longitude onto a flat surface—this step
aims to make the training data as similar to the empirical data as possible. The empiri-
cal data input to disperseNN2 are unphased or phased SNP data in standard variant
call format (VCF) and a corresponding table of latitude and longitude coordinates for
each sample. The model is trained with mean squared error loss, Adam optimizer, and
learning rate 10−4 . The training duration depends on the input size: for example, using
a training set of 50,000 datasets, each with 5000 SNPs and n = 10 , it takes 4.5 h for 100
training iterations on a GPU; with n = 100 it takes approximately a week using all 4950
pairs and kextract = 100 . The program also parallelizes well across CPUs: using 50 cores
leads to similar performance to one GPU. The disperseNN2 documentation provides

https://github.com/keras-team/keras
https://github.com/keras-team/keras

Page 5 of 7Smith and Kern ﻿BMC Bioinformatics (2023) 24:385 	

a complete vignette taking a user through the cycle of simulation, training, and eventual
prediction for an empirical dataset.

Results
For benchmarking the new software we used simulated data as described in [7], using
SLiM [9]. Briefly, the simulated genome is a single chromosome with length 108 base
pairs and recombination rate 10−8 crossovers per base pair per generation. The habitat is
a 50× 50 square; local carrying capacity was set to 5 individuals per square map unit;
and the mother-offspring dispersal distance, mating distance, and competition distances
all shared the same value, σf  , which varied uniformly between 0.2 and 3. To obtain the
“effective” dispersal rate to a randomly chosen parent, σ , the simulation parameter σf
was multiplied by

√

3

2
 (see Smith et al., 2023). Importantly, this is a relatively simple

model, without demographic perturbations or heterogeneous environment, designed
only for benchmarking the new neural network. One hundred individuals were sampled
uniformly at random at the end of the simulation. The full training set consisted of 1000
SLiM simulations, each sampled 50 times, for a total of 50,000 training datasets.

We validated the disperseNN2 architecture on 1000 held-out simulations and meas-
ured performance as the mean relative absolute error (MRAE), root mean squared error
(RMSE), and the correlation between true and predicted values ( r2 ). Prediction error
with disperseNN2 was substantially decreased relative to disperseNN: using 100
spatially distributed individuals and 5000 SNPs as input, we observed a 48% reduction
in MRAE with disperseNN2 relative to disperseNN (Table 1). Using a smaller sam-
ple size, n = 10 , we observed a 33% reduction in MRAE. This is a tremendous improve-
ment to what was already state-of-the-art software. For reference, the MRAE with
disperseNN2 was 75% lower than Rousset’s method run on the same test data using
n = 100 , and 70% lower with n = 10 . Furthermore, 1.9% and 22% of tests with Rousset’s
method using n = 100 and n = 10 , respectively, produced undefined output and were
not included in the error calculation. See [7] for details on our implementation of Rous-
set’s method. In the n = 100 experiment we used all 4950 pairs, but found that using
kextract = 100 instead of kextract = 4950 reduced memory consumption and computation
time considerably, without a reduction in accuracy.

Importantly, these tests used data that were generated under the same process that
produced the training data, and only a single model parameter, σ , was unknown. Thus,
the reported accuracy represents a best case scenario. In practice, there may be addi-
tional unknown parameters, for example, population density, that should be incorpo-
rated into training by varying the unknown parameters between simulations (i.e., using

Table 1  Error metrics

Method Sample size MRAE RMSE r
2

disperseNN2 10 0.140 0.440 0.833

disperseNN 10 0.208 0.558 0.708

Rousset 10 0.458 3.318 0.058

disperseNN2 100 0.065 0.152 0.980

disperseNN 100 0.124 0.368 0.852

Rousset 100 0.255 1.086 0.425

Page 6 of 7Smith and Kern ﻿BMC Bioinformatics (2023) 24:385

a ‘prior’ distribution). See [7] for further discussion and experiments involving model
misspecification.

Conclusion
We present a novel deep learning architecture, disperseNN2, for estimating the
mean, per-generation dispersal rate from genotypes and their geographic coordinates.
The disperseNN2 neural network differs from our previous model, disperseNN,
in two ways. First, disperseNN2 loops through pairs of genotypes at a time,
extracting relevant information from each pair. Second, the neural network makes
use of the geographic coordinates associated with each genotype. These changes allow
disperseNN2 to outperform disperseNN by a sizeable margin. Our approach will
be especially useful for non-model organisms that lack accurate identity-by-descent
tracts and genome wide genealogies, because it can be used with unphased SNP data.
One limitation for our method is generating the required training data, which must
be designed carefully to reflect the empirical data of interest and can be computation-
ally expensive for large populations.

The effective σ parameter output by disperseNN2 represents a measure of gene
flow across space over generations. Inferring this critical evolutionary parameter for a
species allows modeling of a number of affected phenomena, for example, the spread
of an adaptive allele in a population [11], or, for measuring the strength of selection
against hybrids in a genomic cline [12]. Further, we may learn about the evolution of
dispersal by comparing σ between taxa, or by regressing σ with environmental vari-
ables. Effective σ has contributions from both the mother-offspring distance (e.g.,
seed dispersal) and the mating distance (e.g., pollination distance). Therefore, if either
the effective mother-offspring or effective mating distance is known for a species, the
other can be inferred using genetics-based methods like ours. In other cases, it might
be reasonable to assume the two distances occur on similar scales. This ecological
information can in turn be used to study habitat connectivity, guide conservation
translocations, and to predict species range shifts.

Whereas some studies in population genetics have applied convolutional neu-
ral networks to the full genotype matrix, our deep learning model performs feature
extraction on pairs of genotypes. Having the network focus on pairs is an intuitive
strategy for many genetics applications, particularly those involving spatial genetic
data, where researchers are often interested in the relatedness between individu-
als. For studying dispersal, this approach brings the model’s attention to the genetic
and geographic distances between individuals, which follows the basic strategy of
well-established models like that of [4]. Architectures like this one may be useful for
explicitly between-individual tasks like characterizing identity-by-descent tracts,
or for other tasks in population genetics like detecting selective sweeps or inferring
demographic history.

Abbreviations
MRAE	� Mean relative absolute error
RMSE	� Root mean squared error
SNP	� Single nucleotide polymorphism
VCF	� Variant call format

Page 7 of 7Smith and Kern ﻿BMC Bioinformatics (2023) 24:385 	

Acknowledgements
We thank Peter Ralph and members of the Kern-Ralph colab for comments on the project and manuscript.

Author contributions
CCRS and ADK conducted research and wrote the manuscript.

Funding
This work was supported by the National Institutes of Health awards F32GM146484 to C.S. and R01HG010774 and
R35GM148253 to A.D.K.

Data availability
Project name: disperseNN2.
Project home page: https://​github.​com/​kr-​colab/​dispe​rseNN2.
Operating system(s): Platform independent.
Programming language: Python.
Other requirements: None.
License: MIT.
Any restrictions to use by non-academics: None.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 20 August 2023 Accepted: 5 October 2023

References
	1.	 Driscoll DA, Banks SC, Barton PS, Ikin K, Lentini P, Lindenmayer DB, Smith AL, Berry LE, Burns EL, Edworthy A, et al.

The trajectory of dispersal research in conservation biology. Systematic review. PLoS ONE. 2014;9(4): e95053.
	2.	 Harris CM, Park KJ, Atkinson R, Edwards C, Travis JMJ. Invasive species control: incorporating demographic data and

seed dispersal into a management model for Rhododendron ponticum. Ecol Inform. 2009;4(4):226–33.
	3.	 Orsborne J, Furuya-Kanamori L, Jeffries CL, Kristan M, Mohammed AR, Afrane YA, O’Reilly K, Massad E, Drakeley C,

Walker T, et al. Investigating the blood-host plasticity and dispersal of Anopheles coluzzii using a novel field-based
methodology. Parasites Vectors. 2019;12(1):1–8.

	4.	 Rousset F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics.
1997;145(4):1219–28.

	5.	 Ringbauer H, Coop G, Barton NH. Inferring recent demography from isolation by distance of long shared sequence
blocks. Genetics. 2017;205(3):1335–51.

	6.	 Osmond MM, Coop G. Estimating dispersal rates and locating genetic ancestors with genome-wide genealogies.
bioRxiv, 2021-07.

	7.	 Smith CCR, Tittes S, Ralph PL, Kern AD. Dispersal inference from population genetic variation using a convolutional
neural network. Genetics. 2023;224(2):iyad068.

	8.	 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, et al. Large-scale
machine learning on heterogeneous distributed systems. Tensorflow. ArXiv preprint. 2016. arXiv:​1603.​04467

	9.	 Haller BC, Messer PW. SLiM 3: forward genetic simulations beyond the Wright–Fisher model. Mol Biol Evol.
2019;36(3):632–7.

	10.	 Petr M, Haller BC, Ralph PL, Racimo F. slendr: a framework for spatio-temporal population genomic simulations on
geographic landscapes. BioRxiv. 2022;2022–03.

	11.	 Steiner MC, Novembre J. Population genetic models for the spatial spread of adaptive variants: a review in light of
sars-cov-2 evolution. PLoS Genet. 2022;18(9): e1010391.

	12.	 Barton NH, Charlesworth B. Genetic revolutions, founder effects, and speciation. Annu Rev Ecol Syst.
1984;15(1):133–64.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/kr-colab/disperseNN2
http://arxiv.org/abs/1603.04467

	disperseNN2: a neural network for estimating dispersal distance from georeferenced polymorphism data
	Abstract
	Background
	Implementation
	Overview
	Network architecture
	Generating training data
	Analysis

	Results
	Conclusion
	Acknowledgements
	References

