期刊论文详细信息
BMC Hematology
Significantly elevated foetal haemoglobin levels in individuals with glucose 6-phosphate dehydrogenase disease and/or sickle cell trait: a cross-sectional study in Cape Coast, Ghana
Research Article
Edward Morkporkpor Adela1  Richard K. D. Ephraim2  Patrick Adu2  Essel K. M. Bashirudeen2  Florence Haruna2 
[1] Haematology unit, Cape Coast Teaching Hospital, Cape Coast, Ghana;Medical Laboratory Technology Department, School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana;
关键词: Haemoglobinopathy;    Sickle cell trait;    Glucose 6-phosphate dehydrogenase;    Co-inheritance;    Foetal haemoglobin;   
DOI  :  10.1186/s12878-017-0088-6
 received in 2017-03-07, accepted in 2017-09-15,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundPreviously published data have demonstrated that sickle red blood cells produce twice as much reactive oxygen species (ROS) suggesting that co-inheritance of sickle cell disease (SCD) and glucose 6-phosphate dehydrogenase (G6PD) enzymopathy could lead to more severe anaemia during sickling crises. Elevated foetal haemoglobin (Hb F) levels have been shown to have positive modulatory effects on sickling crises and disease outcomes. This study sought to assess how inheritance of G6PD enzymopathy affects the level of Hb F and haemoglobin concentration in adults in steady state.MethodsThis cross-sectional study selected 100 out-patients (41 males and 59 females) visiting the University of Cape Coast hospital, between January, 2016 and May, 2016. Cellulose acetate electrophoresis (pH 8.2–8.6), methaemoglobin reductase test, modified Betke alkaline denaturation methods were used to investigate haemoglobin variants, qualitative G6PD status, and %Hb F levels in venous blood samples drawn from these participants. Data was analysed with GraphPad Prism 6 and SPSS and significance set at p < 0.05.ResultsForty one percent of the participants demonstrated qualitative G6PD enzymopathy whereas only 10% demonstrated Hb AS type (Sickle cell trait, SCT). 5% of the participants co-inherited SCT and G6PD enzymopathy. %Hb F levels in G6PD deficient males was significantly higher than in G6PD deficient females [(p = 0.0003, 2.696% (males) vs 1.975% (females)], although the %Hb F levels was comparable in non-G6PD deficient individuals. %Hb F levels were significantly elevated in males with SCT only (p < 0.05), or G6PD enzymopathy only (p < 0.0001), or SCT + G6PD enzymopathy (p < 0.0001) compared to males with none of these pathologies even though their respective haemoglobin levels were comparable. Male participants with G6PD enzymopathy + SCT co-inheritance had significantly elevated %Hb F when compared to their counterparts with only G6PD enzymopathy (p < 0.001). Male gender [(p = 0.001, OR: 6.912 (2.277–20.984)] partial defective G6PD enzyme [(p = 0.00, OR: 7.567E8 (8.443E7–6.782E9)] SCT [(p = 0.026, OR: 4.625 (1.196–17.881)] were factors associated with raised %Hb F levels ≥2.5.ConclusionThe inheritance of G6PD defect and/or SCT significantly elevate %Hb F levels in the steady state even though haemoglobin levels are not affected.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311099032077ZK.pdf 653KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  文献评价指标  
  下载次数:7次 浏览次数:1次