期刊论文详细信息
BMC Complementary and Alternative Medicine
Effects of microcurrent stimulation on Hyaline cartilage repair in immature male rats (Rattus norvegicus)
Research Article
Paulo Pinto Joazeiro1  Carla de Campos Ciccone2  Marcelo Augusto Marretto Esquisatto2  Lia Mara Grosso Neves2  Denise Cristina Zuzzi2  Josué Sampaio Mendonça2 
[1] Departamento de Histologia e Embriologia, Instituto de Biologia, Universidade Estadual de Campinas, Rua Charles Darwin, s/n. CxP 6109, 13083-863, Campinas, SP, Brazil;Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, 13607-339, Araras, SP, Brazil;
关键词: Hyaline cartilage;    Tissue repair;    Extracellular matrix;    Electrotherapy;    Immature rats;   
DOI  :  10.1186/1472-6882-13-17
 received in 2012-08-02, accepted in 2013-01-16,  发布年份 2013
来源: Springer
PDF
【 摘 要 】

BackgroundIn this study, we investigate the effects of microcurrent stimulation on the repair process of xiphoid cartilage in 45-days-old rats.MethodsTwenty male rats were divided into a control group and a treated group. A 3-mm defect was then created with a punch in anesthetized animals. In the treated group, animals were submitted to daily applications of a biphasic square pulse microgalvanic continuous electrical current during 5 min. In each application, it was used a frequency of 0.3 Hz and intensity of 20 μA. The animals were sacrificed at 7, 21 and 35 days after injury for structural analysis.ResultsBasophilia increased gradually in control animals during the experimental period. In treated animals, newly formed cartilage was observed on days 21 and 35. No statistically significant differences in birefringent collagen fibers were seen between groups at any of the time points. Treated animals presented a statistically larger number of chondroblasts. Calcification points were observed in treated animals on day 35. Ultrastructural analysis revealed differences in cell and matrix characteristics between the two groups. Chondrocyte-like cells were seen in control animals only after 35 days, whereas they were present in treated animals as early as by day 21. The number of cuprolinic blue-stained proteoglycans was statistically higher in treated animals on days 21 and 35.ConclusionWe conclude that microcurrent stimulation accelerates the cartilage repair in non-articular site from prepuberal animals.

【 授权许可】

Unknown   
© de Campos Ciccone et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311098587729ZK.pdf 1920KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  文献评价指标  
  下载次数:2次 浏览次数:0次