期刊论文详细信息
BMC Medical Imaging
Deterministic compressive sampling for high-quality image reconstruction of ultrasound tomography
Research Article
Tran Duc-Tan1  Tran Quang Huy2  Huynh Huu Tue3  Ton That Long3 
[1] Faculty of Electronics & Telecommunications, VNU University of Engineering & Technology, Hanoi, Vietnam;HaNoi Pedagogical University 2, Hanoi, Vietnam;School of Electrical Engineering, VNU International University, HoChiMinh, Vietnam;
关键词: Mammography;    Ultrasound tomography;    Inverse scattering;    Distorted born iterative method (DBIM);    Deterministic compressive sampling (DCS);   
DOI  :  10.1186/s12880-017-0206-8
 received in 2016-11-23, accepted in 2017-05-09,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundA well-known diagnostic imaging modality, termed ultrasound tomography, was quickly developed for the detection of very small tumors whose sizes are smaller than the wavelength of the incident pressure wave without ionizing radiation, compared to the current gold-standard X-ray mammography. Based on inverse scattering technique, ultrasound tomography uses some material properties such as sound contrast or attenuation to detect small targets. The Distorted Born Iterative Method (DBIM) based on first-order Born approximation is an efficient diffraction tomography approach. One of the challenges for a high quality reconstruction is to obtain many measurements from the number of transmitters and receivers. Given the fact that biomedical images are often sparse, the compressed sensing (CS) technique could be therefore effectively applied to ultrasound tomography by reducing the number of transmitters and receivers, while maintaining a high quality of image reconstruction.MethodsThere are currently several work on CS that dispose randomly distributed locations for the measurement system. However, this random configuration is relatively difficult to implement in practice. Instead of it, we should adopt a methodology that helps determine the locations of measurement devices in a deterministic way. For this, we develop the novel DCS-DBIM algorithm that is highly applicable in practice. Inspired of the exploitation of the deterministic compressed sensing technique (DCS) introduced by the authors few years ago with the image reconstruction process implemented using l1 regularization.ResultsSimulation results of the proposed approach have demonstrated its high performance, with the normalized error approximately 90% reduced, compared to the conventional approach, this new approach can save half of number of measurements and only uses two iterations. Universal image quality index is also evaluated in order to prove the efficiency of the proposed approach.ConclusionsNumerical simulation results indicate that CS and DCS techniques offer equivalent image reconstruction quality with simpler practical implementation. It would be a very promising approach in practical applications of modern biomedical imaging technology.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311097687783ZK.pdf 2737KB PDF download
12894_2015_Article_85_TeX2GIF_IEq1.gif 1KB Image download
12894_2015_Article_85_TeX2GIF_IEq2.gif 1KB Image download
12864_2017_4179_Article_IEq34.gif 1KB Image download
12864_2017_3610_Article_IEq3.gif 1KB Image download
12864_2017_4132_Article_IEq27.gif 1KB Image download
12864_2017_3670_Article_IEq15.gif 1KB Image download
12864_2017_4132_Article_IEq30.gif 1KB Image download
12902_2016_104_Article_IEq1.gif 1KB Image download
12864_2017_4132_Article_IEq32.gif 1KB Image download
12864_2017_3777_Article_IEq4.gif 1KB Image download
12864_2017_3781_Article_IEq1.gif 1KB Image download
12864_2017_3781_Article_IEq3.gif 1KB Image download
12864_2017_3781_Article_IEq5.gif 1KB Image download
12864_2016_2793_Article_IEq52.gif 1KB Image download
12864_2017_3990_Article_IEq18.gif 1KB Image download
12864_2017_3809_Article_IEq5.gif 1KB Image download
12864_2017_4190_Article_IEq1.gif 1KB Image download
12864_2017_4320_Article_IEq1.gif 1KB Image download
12864_2017_4275_Article_IEq3.gif 1KB Image download
12864_2017_4132_Article_IEq43.gif 1KB Image download
12864_2017_3492_Article_IEq13.gif 1KB Image download
12864_2017_3733_Article_IEq57.gif 1KB Image download
12864_2017_3492_Article_IEq15.gif 1KB Image download
12864_2017_3733_Article_IEq59.gif 1KB Image download
12864_2017_3733_Article_IEq61.gif 1KB Image download
12864_2017_3777_Article_IEq22.gif 1KB Image download
12888_2017_1557_Article_IEq1.gif 1KB Image download
12864_2017_3777_Article_IEq24.gif 1KB Image download
12864_2016_2696_Article_IEq4.gif 1KB Image download
【 图 表 】

12864_2016_2696_Article_IEq4.gif

12864_2017_3777_Article_IEq24.gif

12888_2017_1557_Article_IEq1.gif

12864_2017_3777_Article_IEq22.gif

12864_2017_3733_Article_IEq61.gif

12864_2017_3733_Article_IEq59.gif

12864_2017_3492_Article_IEq15.gif

12864_2017_3733_Article_IEq57.gif

12864_2017_3492_Article_IEq13.gif

12864_2017_4132_Article_IEq43.gif

12864_2017_4275_Article_IEq3.gif

12864_2017_4320_Article_IEq1.gif

12864_2017_4190_Article_IEq1.gif

12864_2017_3809_Article_IEq5.gif

12864_2017_3990_Article_IEq18.gif

12864_2016_2793_Article_IEq52.gif

12864_2017_3781_Article_IEq5.gif

12864_2017_3781_Article_IEq3.gif

12864_2017_3781_Article_IEq1.gif

12864_2017_3777_Article_IEq4.gif

12864_2017_4132_Article_IEq32.gif

12902_2016_104_Article_IEq1.gif

12864_2017_4132_Article_IEq30.gif

12864_2017_3670_Article_IEq15.gif

12864_2017_4132_Article_IEq27.gif

12864_2017_3610_Article_IEq3.gif

12864_2017_4179_Article_IEq34.gif

12894_2015_Article_85_TeX2GIF_IEq2.gif

12894_2015_Article_85_TeX2GIF_IEq1.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  文献评价指标  
  下载次数:4次 浏览次数:0次