BMC Plant Biology | |
Expression profiling of genes involved in drought stress and leaf senescence in juvenile barley | |
Research Article | |
Frank Ordon1  Klaus Humbeck2  Eva Zyprian3  Christiane Balko4  Gwendolin Wehner5  | |
[1] Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle, Germany;Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany;Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle, Germany;Martin-Luther-University Halle-Wittenberg, Institute of Biology, Weinbergweg 10, 06120, Halle, Germany;Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Grapevine Breeding, Geilweilerhof, 76833, Siebeldingen, Germany;Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Rudolf-Schick-Platz 3, 18190, Sanitz, Germany;Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Rudolf-Schick-Platz 3, 18190, Sanitz, Germany;Interdisciplinary Center for Crop Plant Research (IZN), Hoher Weg 8, 06120, Halle, Germany; | |
关键词: Barley; Leaf senescence; Drought stress; High-throughput qPCR; Gene expression; eQTL; | |
DOI : 10.1186/s12870-015-0701-4 | |
received in 2015-07-28, accepted in 2015-12-22, 发布年份 2016 | |
来源: Springer | |
【 摘 要 】
BackgroundDrought stress in juvenile stages of crop development and premature leaf senescence induced by drought stress have an impact on biomass production and yield formation of barley (Hordeum vulgare L.). Therefore, in order to get information of regulatory processes involved in the adaptation to drought stress and leaf senescence expression analyses of candidate genes were conducted on a set of 156 barley genotypes in early developmental stages, and expression quantitative trait loci (eQTL) were identified by a genome wide association study.ResultsSignificant effects of genotype and treatment were detected for leaf colour measured at BBCH 25 as an indicator of leaf senescence and for the expression level of the genes analysed. Furthermore, significant correlations were detected within the group of genes involved in drought stress (r = 0.84) and those acting in leaf senescence (r = 0.64), as well as between leaf senescence genes and the leaf colour (r = 0.34). Based on these expression data and 3,212 polymorphic single nucleotide polymorphisms (SNP) with a minor allele frequency >5 % derived from the Illumina 9 k iSelect SNP Chip, eight cis eQTL and seven trans eQTL were found. Out of these an eQTL located on chromosome 3H at 142.1 cM is of special interest harbouring two drought stress genes (GAD3 and P5CS2) and one leaf senescence gene (Contig7437), as well as an eQTL on chromosome 5H at 44.5 cM in which two genes (TRIUR3 and AVP1) were identified to be associated to drought stress tolerance in a previous study.ConclusionWith respect to the expression of genes involved in drought stress and early leaf senescence, genotypic differences exist in barley. Major eQTL for the expression of these genes are located on barley chromosome 3H and 5H. Respective markers may be used in future barley breeding programmes for improving tolerance to drought stress and leaf senescence.
【 授权许可】
CC BY
© Wehner et al. 2016
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311097340925ZK.pdf | 675KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]
- [80]
- [81]
- [82]
- [83]
- [84]
- [85]
- [86]
- [87]
- [88]
- [89]
- [90]
- [91]
- [92]
- [93]
- [94]
- [95]
- [96]
- [97]
- [98]
- [99]
- [100]
- [101]
- [102]
- [103]