期刊论文详细信息
BMC Genomics
Medoidshift clustering applied to genomic bulk tumor data
Proceedings
Russell Schwartz1  Theodore Roman2  Lu Xie2 
[1] Computational Biology Department, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave, 15213, Pittsburgh, PA, USA;Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, 4400 Fifth Avenue, 15213, Pittsburgh, PA, USA;Computational Biology Department, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave, 15213, Pittsburgh, PA, USA;Joint Carnegie Mellon/University of Pittsburgh Ph.D. Program in Computational Biology, 5000 Forbes Ave, 15213, Pittsburgh, PA, USA;
关键词: Computational biology;    Clustering;    Tumor;    Heterogeneity;   
DOI  :  10.1186/s12864-015-2302-x
来源: Springer
PDF
【 摘 要 】

Despite the enormous medical impact of cancers and intensive study of their biology, detailed characterization of tumor growth and development remains elusive. This difficulty occurs in large part because of enormous heterogeneity in the molecular mechanisms of cancer progression, both tumor-to-tumor and cell-to-cell in single tumors. Advances in genomic technologies, especially at the single-cell level, are improving the situation, but these approaches are held back by limitations of the biotechnologies for gathering genomic data from heterogeneous cell populations and the computational methods for making sense of those data. One popular way to gain the advantages of whole-genome methods without the cost of single-cell genomics has been the use of computational deconvolution (unmixing) methods to reconstruct clonal heterogeneity from bulk genomic data. These methods, too, are limited by the difficulty of inferring genomic profiles of rare or subtly varying clonal subpopulations from bulk data, a problem that can be computationally reduced to that of reconstructing the geometry of point clouds of tumor samples in a genome space. Here, we present a new method to improve that reconstruction by better identifying subspaces corresponding to tumors produced from mixtures of distinct combinations of clonal subpopulations. We develop a nonparametric clustering method based on medoidshift clustering for identifying subgroups of tumors expected to correspond to distinct trajectories of evolutionary progression. We show on synthetic and real tumor copy-number data that this new method substantially improves our ability to resolve discrete tumor subgroups, a key step in the process of accurately deconvolving tumor genomic data and inferring clonal heterogeneity from bulk data.

【 授权许可】

CC BY   
© Roman et al. 2015

【 预 览 】
附件列表
Files Size Format View
RO202311095843674ZK.pdf 646KB PDF download
12864_2017_3605_Article_IEq6.gif 1KB Image download
12888_2017_1365_Article_IEq2.gif 1KB Image download
12864_2017_3781_Article_IEq8.gif 1KB Image download
12864_2017_3781_Article_IEq9.gif 1KB Image download
12864_2017_4190_Article_IEq3.gif 1KB Image download
12864_2017_4132_Article_IEq42.gif 1KB Image download
12864_2017_4130_Article_IEq16.gif 1KB Image download
12864_2017_4130_Article_IEq17.gif 1KB Image download
12864_2017_4130_Article_IEq18.gif 1KB Image download
12864_2017_3527_Article_IEq3.gif 1KB Image download
12864_2016_3440_Article_IEq46.gif 1KB Image download
【 图 表 】

12864_2016_3440_Article_IEq46.gif

12864_2017_3527_Article_IEq3.gif

12864_2017_4130_Article_IEq18.gif

12864_2017_4130_Article_IEq17.gif

12864_2017_4130_Article_IEq16.gif

12864_2017_4132_Article_IEq42.gif

12864_2017_4190_Article_IEq3.gif

12864_2017_3781_Article_IEq9.gif

12864_2017_3781_Article_IEq8.gif

12888_2017_1365_Article_IEq2.gif

12864_2017_3605_Article_IEq6.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  文献评价指标  
  下载次数:7次 浏览次数:3次