期刊论文详细信息
BMC Biotechnology
Functional expression of recombinant human trefoil factor 1 by Escherichia coli and Brevibacillus choshinensis
Research Article
Yueh-Mei Cheng1  Meng-Ting Lu1  Chuan Mei Yeh2 
[1] Department of Food Science and Biotechnology, National Chung-Hsing University, Taichung, Taiwan, Republic of China;Department of Food Science and Biotechnology, National Chung-Hsing University, Taichung, Taiwan, Republic of China;Agricultural Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan, Republic of China;
关键词: Glycosylated recombinant trefoil factor 1;    Escherichia coli;    Brevibacillus choshinensis;    Secretion;   
DOI  :  10.1186/s12896-015-0149-5
 received in 2014-12-15, accepted in 2015-04-22,  发布年份 2015
来源: Springer
PDF
【 摘 要 】

BackgroundTrefoil factor 1 (TFF1) mediates mucosal repair and belongs to a highly conserved trefoil factor family proteins which are secreted by epithelial cells in the stomach or colon mucous membrane. TFF1 forms a homodimer via a disulphide linkage that affects wound healing activity. Previous recombinant expressions of TFF1 were too low yield for industrial application. This study aims to improve the expression level of bioactive recombinant TFF1 (rTFF1) and facilitate application potency.MethodsThe rTFF1 gene rtff1 was synthesized, expressed by Escherichia coli and secreted by Brevibacillus choshinensis. The rTFF1s were purified. The polymeric patterns and wound healing capacities of purified rTFF1s were checked.ResultsIn Escherichia coli, 21.08 mg/L rTFF1 was stably expressed as monomer, dimer and oligomer in soluble fraction. In Brevebacillus choshinensis, the rTFF1 was secreted extracellularly at high level (35.73 mg/L) and formed monomer, dimer and oligomer forms. Both proteins from different sources were purified by Ni-NTA chromatography and exhibited the wound healing activities. The rTFF1 produced by B. choshinensis had better wound healing capability than the rTFF1 produced by E. coli. After pH 2.4 buffer treatments, the purified rTFF1 formed more oligomeric forms as well as better wound healing capability. Glycosylation assay and LC-MS/MS spectrometry experiments showed that the rTFF1 produced by B. choshinensis was unexpectedly glycosylated at N-terminal Ser residue. The glycosylation may contribute to the better wound healing capacity.ConclusionsThis study provides a potent tool of rTFF1 production to be applied in gastric damage protection and wound healing. The protein sources from B. choshinensis were more efficient than rTFF1 produced by E. coli.

【 授权许可】

Unknown   
© Cheng et al.; licensee BioMed Central. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311095343589ZK.pdf 2334KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  文献评价指标  
  下载次数:1次 浏览次数:1次