BMC Public Health | |
The role of vaccination coverage, individual behaviors, and the public health response in the control of measles epidemics: an agent-based simulation for California | |
Research Article | |
Kathleen Harriman1  Jennifer Zipprich1  Wayne T A Enanoria2  Fengchen Liu3  Sarah F Ackley3  Seth Blumberg3  Travis C Porco4  William D Wheaton5  Justine L Allpress5  | |
[1] California Department of Public Health, Immunization Branch, Richmond, CA, USA;Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA;Francis I. Proctor Foundation, University of California, San Francisco, CA, USA;Francis I. Proctor Foundation, University of California, San Francisco, CA, USA;Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA;Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA;RTI Research Triangle Institute International, San Francisco, CA, USA; | |
关键词: Measle; Vaccination Coverage; Public Health Intervention; Contact Rate; Contact Investigation; | |
DOI : 10.1186/s12889-015-1766-6 | |
received in 2014-11-14, accepted in 2015-04-21, 发布年份 2015 | |
来源: Springer | |
【 摘 要 】
BackgroundMeasles cases continue to occur among susceptible individuals despite the elimination of endemic measles transmission in the United States. Clustering of disease susceptibility can threaten herd immunity and impact the likelihood of disease outbreaks in a highly vaccinated population. Previous studies have examined the role of contact tracing to control infectious diseases among clustered populations, but have not explicitly modeled the public health response using an agent-based model.MethodsWe developed an agent-based simulation model of measles transmission using the Framework for Reconstructing Epidemiological Dynamics (FRED) and the Synthetic Population Database maintained by RTI International. The simulation of measles transmission was based on interactions among individuals in different places: households, schools, daycares, workplaces, and neighborhoods. The model simulated different levels of immunity clustering, vaccination coverage, and contact investigations with delays caused by individuals’ behaviors and/or the delay in a health department’s response. We examined the effects of these characteristics on the probability of uncontrolled measles outbreaks and the outbreak size in 365 days after the introduction of one index case into a synthetic population.ResultsWe found that large measles outbreaks can be prevented with contact investigations and moderate contact rates by having (1) a very high vaccination coverage (≥ 95%) with a moderate to low level of immunity clustering (≤ 0.5) for individuals aged less than or equal to 18 years, or (2) a moderate vaccination coverage (85% or 90%) with no immunity clustering for individuals (≤18 years of age), a short intervention delay, and a high probability that a contact can be traced. Without contact investigations, measles outbreaks may be prevented by the highest vaccination coverage with no immunity clustering for individuals (≤18 years of age) with moderate contact rates; but for the highest contact rates, even the highest coverage with no immunity clustering for individuals (≤18 years of age) cannot completely prevent measles outbreaks.ConclusionsThe simulation results demonstrated the importance of vaccination coverage, clustering of immunity, and contact investigations in preventing uncontrolled measles outbreaks.
【 授权许可】
Unknown
© Liu et al.; licensee BioMed Central. 2015. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311094918921ZK.pdf | 739KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]