期刊论文详细信息
Genetics Selection Evolution
A predictive assessment of genetic correlations between traits in chickens using markers
Research Article
Ahmad Ayatollahi Mehrgardi1  Mehdi Momen1  Masood Asadi Fozi1  Ali Esmailizadeh2  Bruno D. Valente3  Guilherme J. M. Rosa4  Daniel Gianola5  Ayoub Sheikhy6  Andreas Kranis7 
[1] Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman (SBUK), Kerman, Iran;Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman (SBUK), Kerman, Iran;State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China;Department of Animal Sciences, University of Wisconsin, Madison, WI, USA;Department of Animal Sciences, University of Wisconsin, Madison, WI, USA;Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA;Department of Animal Sciences, University of Wisconsin, Madison, WI, USA;Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison, WI, USA;Department of Dairy Science, University of Wisconsin, Madison, WI, USA;Department of Statistical, Faculty of Mathematic and Computer Science, Shahid Bahonar University of Kerman (SBUK), Kerman, Iran;Roslin Institute, University of Edinburgh, Midlothian, UK;
关键词: Quantitative Trait Locus;    Genetic Correlation;    Genomic Selection;    Genomic Prediction;    Genomic Relationship;   
DOI  :  10.1186/s12711-017-0290-9
 received in 2016-07-16, accepted in 2017-01-16,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundGenomic selection has been successfully implemented in plant and animal breeding programs to shorten generation intervals and accelerate genetic progress per unit of time. In practice, genomic selection can be used to improve several correlated traits simultaneously via multiple-trait prediction, which exploits correlations between traits. However, few studies have explored multiple-trait genomic selection. Our aim was to infer genetic correlations between three traits measured in broiler chickens by exploring kinship matrices based on a linear combination of measures of pedigree and marker-based relatedness. A predictive assessment was used to gauge genetic correlations.MethodsA multivariate genomic best linear unbiased prediction model was designed to combine information from pedigree and genome-wide markers in order to assess genetic correlations between three complex traits in chickens, i.e. body weight at 35 days of age (BW), ultrasound area of breast meat (BM) and hen-house egg production (HHP). A dataset with 1351 birds that were genotyped with the 600 K Affymetrix platform was used. A kinship kernel (K) was constructed as K = λG + (1 − λ)A, where A is the numerator relationship matrix, measuring pedigree-based relatedness, and G is a genomic relationship matrix. The weight (λ) assigned to each source of information varied over the grid λ = (0, 0.2, 0.4, 0.6, 0.8, 1). Maximum likelihood estimates of heritability and genetic correlations were obtained at each λ, and the “optimum” λ was determined using cross-validation.ResultsEstimates of genetic correlations were affected by the weight placed on the source of information used to build K. For example, the genetic correlation between BW–HHP and BM–HHP changed markedly when λ varied from 0 (only A used for measuring relatedness) to 1 (only genomic information used). As λ increased, predictive correlations (correlation between observed phenotypes and predicted breeding values) increased and mean-squared predictive error decreased. However, the improvement in predictive ability was not monotonic, with an optimum found at some 0 < λ < 1, i.e., when both sources of information were used together.ConclusionsOur findings indicate that multiple-trait prediction may benefit from combining pedigree and marker information. Also, it appeared that expected correlated responses to selection computed from standard theory may differ from realized responses. The predictive assessment provided a metric for performance evaluation as well as a means for expressing uncertainty of outcomes of multiple-trait selection.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311094778556ZK.pdf 1971KB PDF download
12864_2017_3990_Article_IEq4.gif 1KB Image download
12864_2017_4179_Article_IEq29.gif 1KB Image download
12864_2017_4179_Article_IEq31.gif 1KB Image download
12864_2017_3733_Article_IEq30.gif 1KB Image download
12864_2017_3661_Article_IEq1.gif 1KB Image download
12864_2017_3661_Article_IEq3.gif 1KB Image download
12894_2016_184_Article_IEq2.gif 1KB Image download
12864_2015_1944_Article_IEq4.gif 1KB Image download
12864_2017_3683_Article_IEq2.gif 1KB Image download
12864_2016_2793_Article_IEq40.gif 1KB Image download
12864_2017_3733_Article_IEq39.gif 1KB Image download
12864_2015_1944_Article_IEq10.gif 1KB Image download
12864_2017_3676_Article_IEq1.gif 1KB Image download
12864_2017_3487_Article_IEq44.gif 1KB Image download
12888_2017_1365_Article_IEq1.gif 1KB Image download
12888_2017_1365_Article_IEq2.gif 1KB Image download
12888_2017_1365_Article_IEq3.gif 1KB Image download
12864_2017_3676_Article_IEq3.gif 1KB Image download
12888_2017_1365_Article_IEq6.gif 1KB Image download
12864_2015_1933_Article_IEq3.gif 1KB Image download
12864_2015_2213_Article_IEq1.gif 1KB Image download
12864_2016_3097_Article_IEq6.gif 1KB Image download
12864_2016_3098_Article_IEq75.gif 1KB Image download
12864_2017_4132_Article_IEq34.gif 1KB Image download
12864_2017_3521_Article_IEq2.gif 1KB Image download
12877_2015_20_Article_IEq1.gif 1KB Image download
12864_2017_3521_Article_IEq4.gif 1KB Image download
12864_2017_4133_Article_IEq37.gif 1KB Image download
12864_2017_3777_Article_IEq13.gif 1KB Image download
12864_2017_3487_Article_IEq60.gif 1KB Image download
12864_2017_3777_Article_IEq15.gif 1KB Image download
12894_2015_Article_5_TeX2GIF_IEq1.gif 1KB Image download
12864_2017_3777_Article_IEq16.gif 1KB Image download
12864_2016_3098_Article_IEq87.gif 1KB Image download
12864_2016_2871_Article_IEq23.gif 1KB Image download
12864_2017_3733_Article_IEq57.gif 1KB Image download
12864_2016_2695_Article_IEq3.gif 1KB Image download
12864_2017_3492_Article_IEq15.gif 1KB Image download
【 图 表 】

12864_2017_3492_Article_IEq15.gif

12864_2016_2695_Article_IEq3.gif

12864_2017_3733_Article_IEq57.gif

12864_2016_2871_Article_IEq23.gif

12864_2016_3098_Article_IEq87.gif

12864_2017_3777_Article_IEq16.gif

12894_2015_Article_5_TeX2GIF_IEq1.gif

12864_2017_3777_Article_IEq15.gif

12864_2017_3487_Article_IEq60.gif

12864_2017_3777_Article_IEq13.gif

12864_2017_4133_Article_IEq37.gif

12864_2017_3521_Article_IEq4.gif

12877_2015_20_Article_IEq1.gif

12864_2017_3521_Article_IEq2.gif

12864_2017_4132_Article_IEq34.gif

12864_2016_3098_Article_IEq75.gif

12864_2016_3097_Article_IEq6.gif

12864_2015_2213_Article_IEq1.gif

12864_2015_1933_Article_IEq3.gif

12888_2017_1365_Article_IEq6.gif

12864_2017_3676_Article_IEq3.gif

12888_2017_1365_Article_IEq3.gif

12888_2017_1365_Article_IEq2.gif

12888_2017_1365_Article_IEq1.gif

12864_2017_3487_Article_IEq44.gif

12864_2017_3676_Article_IEq1.gif

12864_2015_1944_Article_IEq10.gif

12864_2017_3733_Article_IEq39.gif

12864_2016_2793_Article_IEq40.gif

12864_2017_3683_Article_IEq2.gif

12864_2015_1944_Article_IEq4.gif

12894_2016_184_Article_IEq2.gif

12864_2017_3661_Article_IEq3.gif

12864_2017_3661_Article_IEq1.gif

12864_2017_3733_Article_IEq30.gif

12864_2017_4179_Article_IEq31.gif

12864_2017_4179_Article_IEq29.gif

12864_2017_3990_Article_IEq4.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  文献评价指标  
  下载次数:5次 浏览次数:0次