| BMC Bioinformatics | |
| Distributed gene expression modelling for exploring variability in epigenetic function | |
| Research Article | |
| David M. Budden1  Edmund J. Crampin2  | |
| [1] Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 02139, Cambridge, USA;Systems Biology Laboratory, Melbourne School of Engineering, the University of Melbourne, 3010, Parkville, Australia;Systems Biology Laboratory, Melbourne School of Engineering, the University of Melbourne, 3010, Parkville, Australia;ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, 3010, Parkville, Australia;Department of Mathematics and Statistics, the University of Melbourne, 3010, Parkville, Australia;School of Medicine, the University of Melbourne, 3010, Parkville, Australia; | |
| 关键词: Gene expression; Epigenetics; Histone modifications; MapReduce; | |
| DOI : 10.1186/s12859-016-1313-1 | |
| received in 2016-08-03, accepted in 2016-10-25, 发布年份 2016 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundPredictive gene expression modelling is an important tool in computational biology due to the volume of high-throughput sequencing data generated by recent consortia. However, the scope of previous studies has been restricted to a small set of cell-lines or experimental conditions due an inability to leverage distributed processing architectures for large, sharded data-sets.ResultsWe present a distributed implementation of gene expression modelling using the MapReduce paradigm and prove that performance improves as a linear function of available processor cores. We then leverage the computational efficiency of this framework to explore the variability of epigenetic function across fifty histone modification data-sets from variety of cancerous and non-cancerous cell-lines.ConclusionsWe demonstrate that the genome-wide relationships between histone modifications and mRNA transcription are lineage, tissue and karyotype-invariant, and that models trained on matched -omics data from non-cancerous cell-lines are able to predict cancerous expression with equivalent genome-wide fidelity.
【 授权许可】
CC BY
© The Author(s) 2016
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202311094072506ZK.pdf | 928KB | ||
| 12864_2017_4179_Article_IEq10.gif | 1KB | Image | |
| 12864_2015_2055_Article_IEq5.gif | 1KB | Image | |
| 12864_2017_4179_Article_IEq12.gif | 1KB | Image | |
| 12864_2017_4186_Article_IEq26.gif | 1KB | Image | |
| 12864_2017_4186_Article_IEq27.gif | 1KB | Image | |
| 12864_2015_1945_Article_IEq3.gif | 1KB | Image | |
| 12864_2017_4186_Article_IEq29.gif | 1KB | Image | |
| 12864_2016_2821_Article_IEq60.gif | 1KB | Image | |
| 12864_2017_4186_Article_IEq31.gif | 1KB | Image | |
| 12864_2017_4030_Article_IEq26.gif | 1KB | Image | |
| 12864_2017_4132_Article_IEq7.gif | 1KB | Image | |
| 12864_2016_2793_Article_IEq13.gif | 1KB | Image | |
| 12864_2017_4132_Article_IEq10.gif | 1KB | Image | |
| 12864_2017_4030_Article_IEq29.gif | 1KB | Image | |
| 12864_2016_3098_Article_IEq70.gif | 1KB | Image | |
| 12864_2017_4030_Article_IEq31.gif | 1KB | Image | |
| 12864_2017_4132_Article_IEq14.gif | 1KB | Image | |
| 12864_2017_4030_Article_IEq33.gif | 1KB | Image | |
| 12864_2015_2174_Article_IEq1.gif | 1KB | Image | |
| 12864_2017_4030_Article_IEq35.gif | 1KB | Image |
【 图 表 】
12864_2017_4030_Article_IEq35.gif
12864_2015_2174_Article_IEq1.gif
12864_2017_4030_Article_IEq33.gif
12864_2017_4132_Article_IEq14.gif
12864_2017_4030_Article_IEq31.gif
12864_2016_3098_Article_IEq70.gif
12864_2017_4030_Article_IEq29.gif
12864_2017_4132_Article_IEq10.gif
12864_2016_2793_Article_IEq13.gif
12864_2017_4132_Article_IEq7.gif
12864_2017_4030_Article_IEq26.gif
12864_2017_4186_Article_IEq31.gif
12864_2016_2821_Article_IEq60.gif
12864_2017_4186_Article_IEq29.gif
12864_2015_1945_Article_IEq3.gif
12864_2017_4186_Article_IEq27.gif
12864_2017_4186_Article_IEq26.gif
12864_2017_4179_Article_IEq12.gif
12864_2015_2055_Article_IEq5.gif
12864_2017_4179_Article_IEq10.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
PDF