期刊论文详细信息
BMC Bioinformatics
Distributed gene expression modelling for exploring variability in epigenetic function
Research Article
David M. Budden1  Edmund J. Crampin2 
[1] Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory, 02139, Cambridge, USA;Systems Biology Laboratory, Melbourne School of Engineering, the University of Melbourne, 3010, Parkville, Australia;Systems Biology Laboratory, Melbourne School of Engineering, the University of Melbourne, 3010, Parkville, Australia;ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, 3010, Parkville, Australia;Department of Mathematics and Statistics, the University of Melbourne, 3010, Parkville, Australia;School of Medicine, the University of Melbourne, 3010, Parkville, Australia;
关键词: Gene expression;    Epigenetics;    Histone modifications;    MapReduce;   
DOI  :  10.1186/s12859-016-1313-1
 received in 2016-08-03, accepted in 2016-10-25,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundPredictive gene expression modelling is an important tool in computational biology due to the volume of high-throughput sequencing data generated by recent consortia. However, the scope of previous studies has been restricted to a small set of cell-lines or experimental conditions due an inability to leverage distributed processing architectures for large, sharded data-sets.ResultsWe present a distributed implementation of gene expression modelling using the MapReduce paradigm and prove that performance improves as a linear function of available processor cores. We then leverage the computational efficiency of this framework to explore the variability of epigenetic function across fifty histone modification data-sets from variety of cancerous and non-cancerous cell-lines.ConclusionsWe demonstrate that the genome-wide relationships between histone modifications and mRNA transcription are lineage, tissue and karyotype-invariant, and that models trained on matched -omics data from non-cancerous cell-lines are able to predict cancerous expression with equivalent genome-wide fidelity.

【 授权许可】

CC BY   
© The Author(s) 2016

【 预 览 】
附件列表
Files Size Format View
RO202311101277086ZK.pdf 928KB PDF download
MediaObjects/13046_2023_2843_MOESM1_ESM.docx 17KB Other download
Fig. 2 536KB Image download
Fig. 1 258KB Image download
MediaObjects/12888_2023_5208_MOESM1_ESM.docx 7KB Other download
12936_2017_1963_Article_IEq60.gif 1KB Image download
Fig. 8 780KB Image download
Fig. 3 2506KB Image download
12936_2016_1316_Article_IEq8.gif 1KB Image download
12951_2017_255_Article_IEq33.gif 1KB Image download
MediaObjects/12951_2023_2144_MOESM1_ESM.docx 15232KB Other download
12951_2017_255_Article_IEq34.gif 1KB Image download
12951_2015_155_Article_IEq53.gif 1KB Image download
MediaObjects/13046_2023_2843_MOESM2_ESM.docx 5319KB Other download
12951_2015_155_Article_IEq54.gif 1KB Image download
Fig. 2 159KB Image download
Fig. 1 191KB Image download
MediaObjects/40538_2023_474_MOESM8_ESM.xls 17KB Other download
Fig. 1 167KB Image download
MediaObjects/40538_2023_474_MOESM9_ESM.xlsx 13KB Other download
Fig. 2 1630KB Image download
【 图 表 】

Fig. 2

Fig. 1

Fig. 1

Fig. 2

12951_2015_155_Article_IEq54.gif

12951_2015_155_Article_IEq53.gif

12951_2017_255_Article_IEq34.gif

12951_2017_255_Article_IEq33.gif

12936_2016_1316_Article_IEq8.gif

Fig. 3

Fig. 8

12936_2017_1963_Article_IEq60.gif

Fig. 1

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  文献评价指标  
  下载次数:1次 浏览次数:0次