BMC Complementary and Alternative Medicine | |
Effect of black tea extract on herpes simplex virus-1 infection of cultured cells | |
Research Article | |
Sade D Randall1  Anthony Cantatore1  Sandra D Adams1  Daniel Traum1  | |
[1] Department of Biology and Molecular Biology, Montclair State University, 07043, Montclair, NJ, USA; | |
关键词: Herpes simplex virus-1; Black tea extract; Theaflavins; Antiviral; | |
DOI : 10.1186/1472-6882-13-139 | |
received in 2013-01-16, accepted in 2013-06-14, 发布年份 2013 | |
来源: Springer | |
【 摘 要 】
BackgroundThe purpose of this investigation was to determine if black tea extract (BTE), consisting primarily of flavanol compounds called theaflavins, could inhibit herpes simplex virus type-1 (HSV-1) infection in cultured A549 (human epithelial) and Vero cells.MethodsThe effect of BTE both on A549 and Vero cultured cells and on HSV-1 was assessed by using phase contrast and fluorescent microscopy, and cell viability and proliferation assays. After establishing the maximum non-cytotoxic concentration of BTE, A549 and Vero cells and HSV-1 virions were treated with varying concentrations of BTE, respectively. A549 and Vero cells were infected with HSV-1 with green fluorescent protein (GFP) insert at the UL46 gene. The effect of infectivity was determined by viral DNA extraction followed by PCR, plaque assays, adsorption assays, and electrophoresis of PCR products.ResultsBTE was not cytotoxic to A549 and Vero cells, as confirmed by cell viability and proliferation assays, in which BTE treated groups paralleled the positive control group. For both cell lines, plaque assays and fluorescent microscopy indicated an inverse relationship between BTE concentration (from 0.14 μM – 1.4 mM) and HSV-1 infectivity. Specifically, PCR and electrophoresis showed a reduction in the viral genome following treatment with BTE. In addition, there was a noticeable decrease in the amount of viral plaques for BTE treated samples in the adsorption assays.ConclusionsBTE consisting primarily of theaflavins is not cytotoxic and can reduce or block the production of infectious HSV-1 virions in cultured A549 and Vero cells, thus inhibiting the infectivity of the virus by interfering in the attachment, penetration and viral DNA replication of HSV-1 particles. These findings indicate that BTE enriched with theaflavins has the potential to be developed as a safe, therapeutic antiviral agent to prevent the spread of HSV-1.
【 授权许可】
Unknown
© Cantatore et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311093288777ZK.pdf | 1977KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]