| BMC Genomics | |
| Use of genotyping-by-sequencing to determine the genetic structure in the medicinal plant chamomile, and to identify flowering time and alpha-bisabolol associated SNP-loci by genome-wide association mapping | |
| Research Article | |
| Lars-Gernot Otto1  Jonathan Brassac1  Timothy Francis Sharbel2  Sang He3  Jochen Christoph Reif3  Susanne Preiss4  Prodyut Mondal4  Jörg Degenhardt4  | |
| [1] Apomixis Research Group, Department Plant Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Seeland OT Gatersleben, Germany;Apomixis Research Group, Department Plant Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Seeland OT Gatersleben, Germany;Global Institute for Food Security, University of Saskatchewan, 110 Gymnasium Place, S7N 4J8, Saskatoon, SK, Canada;Quantitative Genetics Research Group, Department Plant Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466, Seeland OT Gatersleben, Germany;Research Group of Pharmaceutical Biotechnology, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle (Saale), Germany; | |
| 关键词: Matricaria recutita; Chamomile; Medicinal and aromatic plant (MAP); Genetic diversity; Genome-wide association study (GWAS); Bisabolol; Genetic resources; Genotyping by sequencing (GBS); Single nucleotide polymorphism (SNP); Structure; | |
| DOI : 10.1186/s12864-017-3991-0 | |
| received in 2017-04-13, accepted in 2017-08-01, 发布年份 2017 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundChamomile (Matricaria recutita L.) has a long history of use in herbal medicine with various applications, and the flower heads contain numerous secondary metabolites which are medicinally active.In the major crop plants, next generation sequencing (NGS) approaches are intensely applied to exploit genetic resources, to develop genomic resources and to enhance breeding. Here, genotyping-by-sequencing (GBS) has been used in the non-model medicinal plant chamomile to evaluate the genetic structure of the cultivated varieties/populations, and to perform genome wide association study (GWAS) focusing on genes with large effect on flowering time and the medicinally important alpha-bisabolol content.ResultsGBS analysis allowed the identification of 6495 high-quality SNP-markers in our panel of 91 M. recutita plants from 33 origins (2–4 genotypes each) and 4 M. discoidea plants as outgroup, grown in the greenhouse in Gatersleben, Germany. M. recutita proved to be clearly distinct from the outgroup, as was demonstrated by different cluster and principal coordinate analyses using the SNP-markers. Chamomile genotypes from the same origin were mostly genetically similar. Model-based cluster analysis revealed one large group of tetraploid genotypes with low genetic differentiation including 39 plants from 14 origins. Tetraploids tended to display lower genetic diversity than diploids, probably reflecting their origin by artificial polyploidisation from only a limited set of genetic backgrounds.Analyses of flowering time demonstrated that diploids generally flowered earlier than tetraploids, and the analysis of alpha-bisabolol identified several tetraploid genotypes with a high content. GWAS identified highly significant (P < 0.01) SNPs for flowering time (9) and alpha-bisabolol (71). One sequence harbouring SNPs associated with flowering time was described to play a role in self-pollination in Arabidopsis thaliana, whereas four sequences harbouring SNPs associated with alpha-bisabolol were identified to be involved in plant biotic and abiotic stress response in various plants species.ConclusionsThe first genomic resource for future applications to enhance breeding in chamomile was created, andanalyses of diversity will facilitate the exploitation of these genetic resources. The GWAS data pave the way for future research towards the genetics underlying important traits in chamomile, the identification of marker-trait associations, and development of reliable markers for practical breeding.
【 授权许可】
CC BY
© The Author(s). 2017
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202311093210345ZK.pdf | 1493KB |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
PDF