期刊论文详细信息
BMC Bioinformatics
A novel molecular dynamics approach to evaluate the effect of phosphorylation on multimeric protein interface: the αB-Crystallin case study
Research Article
Federica Chiappori1  Ivan Merelli1  Luciano Milanesi1  Luca Mattiazzi2 
[1] Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20090, Segrate, MI, Italy;Institute for Biomedical Technologies, National Research Council (ITB-CNR), 20090, Segrate, MI, Italy;Biotechnology and Biosciences Department, University of Milano-Bicocca, 20126, Milan, Italy;
关键词: Post-translational modification;    Phosphorylation;    Molecular dynamics;    PCA;    Clustering;    αB-Crystallin;    Chaperone;    Small HSP;   
DOI  :  10.1186/s12859-016-0909-9
来源: Springer
PDF
【 摘 要 】

BackgroundPhosphorylation is one of the most important post-translational modifications (PTM) employed by cells to regulate several cellular processes. Studying the effects of phosphorylations on protein structures allows to investigate the modulation mechanisms of several proteins including chaperones, like the small HSPs, which display different multimeric structures according to the phosphorylation of a few serine residues. In this context, the proposed study is aimed at finding a method to correlate different PTM patterns (in particular phosphorylations at the monomers interface of multimeric complexes) with the dynamic behaviour of the complex, using physicochemical parameters derived from molecular dynamics simulations in the timescale of nanoseconds.ResultsWe have developed a methodology relying on computing nine physicochemical parameters, derived from the analysis of short MD simulations, and combined with N identifiers that characterize the PTMs of the analysed protein. The nine general parameters were validated on three proteins, with known post-translational modified conformation and unmodified conformation. Then, we applied this approach to the case study of αB-Crystallin, a chaperone which multimeric state (up to 40 units) is supposed to be controlled by phosphorylation of Ser45 and Ser59. Phosphorylation of serines at the dimer interface induces the release of hexamers, the active state of αB-Crystallin. 30 ns of MD simulation were obtained for each possible combination of dimer phosphorylation state and average values of structural, dynamic, energetic and functional features were calculated on the equilibrated portion of the trajectories. Principal Component Analysis was applied to the parameters and the first five Principal Components, which summed up to 84 % of the total variance, were finally considered.ConclusionsThe validation of this approach on multimeric proteins, which structures were known both modified and unmodified, allowed us to propose a new approach that can be used to predict the impact of PTM patterns in multi-modified proteins using data collected from short molecular dynamics simulations. Analysis on the αB-Crystallin case study clusters together all-P dimers with all-P hexamers and no-P dimer with no-P hexamer and results suggest a great influence of Ser59 phosphorylation on chain B.

【 授权许可】

CC BY   
© Chiappori et al. 2016

【 预 览 】
附件列表
Files Size Format View
RO202311092592271ZK.pdf 2354KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  文献评价指标  
  下载次数:15次 浏览次数:1次