BMC Genomics | |
Genomes of “Spiribacter”, a streamlined, successful halophilic bacterium | |
Research Article | |
José Luis Copa-Patiño1  Juan Soliveri1  Ángel Rodríguez-Olmos1  Maria Jose Leon2  Antonio Ventosa2  Cristina Sanchez-Porro2  Rohit Ghai3  Mario López-Pérez3  Francisco Rodriguez-Valera3  | |
[1] Department of Biomedicine and Biotechnology, Faculty of Pharmacy, University of Alcalá, 28871, Alcalá de Henares, Madrid, Spain;Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012, Sevilla, Spain;Evolutionary Genomics Group, División de Microbiología, Universidad Miguel Hernández, Apartado 18, 03550, San Juan, Alicante, Spain; | |
关键词: Halophilic bacteria; Xanthorhodopsin; Hypersaline; Saltern; Spiribacter; Moderate halophile; | |
DOI : 10.1186/1471-2164-14-787 | |
received in 2013-09-11, accepted in 2013-11-11, 发布年份 2013 | |
来源: Springer | |
【 摘 要 】
BackgroundThalassosaline waters produced by the concentration of seawater are widespread and common extreme aquatic habitats. Their salinity varies from that of sea water (ca. 3.5%) to saturation for NaCl (ca. 37%). Obviously the microbiota varies dramatically throughout this range. Recent metagenomic analysis of intermediate salinity waters (19%) indicated the presence of an abundant and yet undescribed gamma-proteobacterium. Two strains belonging to this group have been isolated from saltern ponds of intermediate salinity in two Spanish salterns and were named “Spiribacter”.ResultsThe genomes of two isolates of “Spiribacter” have been fully sequenced and assembled. The analysis of metagenomic datasets indicates that microbes of this genus are widespread worldwide in medium salinity habitats representing the first ecologically defined moderate halophile. The genomes indicate that the two isolates belong to different species within the same genus. Both genomes are streamlined with high coding densities, have few regulatory mechanisms and no motility or chemotactic behavior. Metabolically they are heterotrophs with a subgroup II xanthorhodopsin as an additional energy source when light is available.ConclusionsThis is the first bacterium that has been proven by culture independent approaches to be prevalent in hypersaline habitats of intermediate salinity (half a way between the sea and NaCl saturation). Predictions from the proteome and analysis of transporter genes, together with a complete ectoine biosynthesis gene cluster are consistent with these microbes having the salt-out-organic-compatible solutes type of osmoregulation. All these features are also consistent with a well-adapted fully planktonic microbe while other halophiles with more complex genomes such as Salinibacter ruber might have particle associated microniches.
【 授权许可】
Unknown
© López-Pérez et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311092352200ZK.pdf | 1719KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]