期刊论文详细信息
BMC Genomics
Use of somatic mutations to quantify random contributions to mouse development
Research Article
Hannele Ruohola-Baker1  Wenyu Zhou2  Stephen J Salipante3  Marshall S Horwitz4  Eva M Crist4  Donovan J Anderson4  Yunbing Tan5 
[1] Department of Biochemistry, University of Washington, 98195, Seattle, WA, USA;Department of Biology, University of Washington, 98195, Seattle, WA, USA;Department of Laboratory Medicine, University of Washington, 98195, Seattle, WA, USA;Department of Pathology, University of Washington, Box 358056, 98195, Seattle, WA, USA;The School of Electrical Engineering and Computer Science, Washington State University, 99163, Pullman, WA, USA;
关键词: Fate map;    Cell lineage;    Differentiation;   
DOI  :  10.1186/1471-2164-14-39
 received in 2012-06-08, accepted in 2013-01-11,  发布年份 2013
来源: Springer
PDF
【 摘 要 】

BackgroundThe C. elegans cell fate map, in which the lineage of its approximately 1000 cells is visibly charted beginning from the zygote, represents a developmental biology milestone. Nematode development is invariant from one specimen to the next, whereas in mammals, aspects of development are probabilistic, and development exhibits variation between even genetically identical individuals. Consequently, a single defined cell fate map applicable to all individuals cannot exist.ResultsTo determine the extent to which patterns of cell lineage are conserved between different mice, we have employed the recently developed method of “phylogenetic fate mapping” to compare cell fate maps in siblings. In this approach, somatic mutations arising in individual cells are used to retrospectively deduce lineage relationships through phylogenetic and—as newly investigated here—related analytical approaches based on genetic distance. We have cataloged genomic mutations at an average of 110 mutation-prone polyguanine (polyG) tracts for about 100 cells clonally isolated from various corresponding tissues of each of two littermates of a hypermutable mouse strain.ConclusionsWe find that during mouse development, muscle and fat arise from a mixed progenitor cell pool in the germ layer, but, contrastingly, vascular endothelium in brain derives from a smaller source of progenitor cells. Additionally, formation of tissue primordia is marked by establishment of left and right lateral compartments, with restricted cell migration between divisions. We quantitatively demonstrate that development represents a combination of stochastic and deterministic events, offering insight into how chance influences normal development and may give rise to birth defects.

【 授权许可】

Unknown   
© Zhou et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311091901023ZK.pdf 823KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  文献评价指标  
  下载次数:1次 浏览次数:0次