期刊论文详细信息
BMC Plant Biology
Production of engineered long-life and male sterile Pelargonium plants
Research Article
Marisé Borja1  José Pío Beltrán2  Teresa Antón2  Vicente Moreno2  Alejandro Atarés2  Edelín Roque2  Benito Pineda2  Luis Antonio Cañas2  Begoña García-Sogo2 
[1] BIOMIVA S.L, Carretera M-511 Km. 2, E-28670, Villaviciosa de Odón Madrid, Spain;Plant Response Biotech S.L., Parque Científico-Tecnológico Montegancedo, E-28223, Pozuelo de Alarcón, Madrid, Spain;Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Ciudad Politécnica de la Innovación, Edf. 8E. C/Ingeniero Fausto Elio s/n, E-46011, Valencia, Spain;
关键词: Pelargonium zonale;    Pelargonium peltatum;    pSAG12;    ipt;    Engineered long-lived plants;    Delayed senescence;    Engineered male sterility;    PsEND1;    Barnase;    Anther ablation;    Biosafe ornamentals;   
DOI  :  10.1186/1471-2229-12-156
 received in 2012-03-29, accepted in 2012-08-02,  发布年份 2012
来源: Springer
PDF
【 摘 要 】

BackgroundPelargonium is one of the most popular garden plants in the world. Moreover, it has a considerable economic importance in the ornamental plant market. Conventional cross-breeding strategies have generated a range of cultivars with excellent traits. However, gene transfer via Agrobacterium tumefaciens could be a helpful tool to further improve Pelargonium by enabling the introduction of new genes/traits. We report a simple and reliable protocol for the genetic transformation of Pelargonium spp. and the production of engineered long-life and male sterile Pelargonium zonale plants, using the pSAG12::ipt and PsEND1::barnase chimaeric genes respectively.ResultsThe pSAG12::ipt transgenic plants showed delayed leaf senescence, increased branching and reduced internodal length, as compared to control plants. Leaves and flowers of the pSAG12::ipt plants were reduced in size and displayed a more intense coloration. In the transgenic lines carrying the PsEND1::barnase construct no pollen grains were observed in the modified anther structures, which developed instead of normal anthers. The locules of sterile anthers collapsed 3–4 days prior to floral anthesis and, in most cases, the undeveloped anther tissues underwent necrosis.ConclusionThe chimaeric construct pSAG12::ipt can be useful in Pelargonium spp. to delay the senescence process and to modify plant architecture. In addition, the use of engineered male sterile plants would be especially useful to produce environmentally friendly transgenic plants carrying new traits by preventing gene flow between the genetically modified ornamentals and related plant species. These characteristics could be of interest, from a commercial point of view, both for pelargonium producers and consumers.

【 授权许可】

Unknown   
© García-Sogo et al.; licensee BioMed Central Ltd. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311091887781ZK.pdf 2207KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  文献评价指标  
  下载次数:6次 浏览次数:0次