期刊论文详细信息
BMC Bioinformatics
Reduction strategies for hierarchical multi-label classification in protein function prediction
Methodology Article
Ricardo Cerri1  Yaochu Jin2  Rodrigo C. Barros3  André C. P. L. F. de Carvalho4 
[1] Department of Computer Science, UFSCar Federal University of São Carlos, Rodovia Washington Luís, Km 235, 13565-905, São Carlos, SP, Brazil;Department of Computer Science, University of Surrey, GU2 7XH Guildford, Surrey, United Kingdom;Faculdade de Informática, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil;Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, Campus de São Carlos 135, 13566-590, São Carlos, SP, Brazil;
关键词: Hierarchical multi-label classification;    Protein function prediction;    Machine learning;    Neural networks;   
DOI  :  10.1186/s12859-016-1232-1
 received in 2016-01-16, accepted in 2016-08-30,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundHierarchical Multi-Label Classification is a classification task where the classes to be predicted are hierarchically organized. Each instance can be assigned to classes belonging to more than one path in the hierarchy. This scenario is typically found in protein function prediction, considering that each protein may perform many functions, which can be further specialized into sub-functions. We present a new hierarchical multi-label classification method based on multiple neural networks for the task of protein function prediction. A set of neural networks are incrementally training, each being responsible for the prediction of the classes belonging to a given level.ResultsThe method proposed here is an extension of our previous work. Here we use the neural network output of a level to complement the feature vectors used as input to train the neural network in the next level. We experimentally compare this novel method with several other reduction strategies, showing that it obtains the best predictive performance. Empirical results also show that the proposed method achieves better or comparable predictive performance when compared with state-of-the-art methods for hierarchical multi-label classification in the context of protein function prediction.ConclusionsThe experiments showed that using the output in one level as input to the next level contributed to better classification results. We believe the method was able to learn the relationships between the protein functions during training, and this information was useful for classification. We also identified in which functional classes our method performed better.

【 授权许可】

CC BY   
© The Author(s) 2016

【 预 览 】
附件列表
Files Size Format View
RO202311091546982ZK.pdf 2902KB PDF download
12864_2016_3074_Article_IEq2.gif 1KB Image download
12864_2015_2129_Article_IEq8.gif 1KB Image download
12864_2016_2913_Article_IEq23.gif 1KB Image download
12864_2017_3661_Article_IEq1.gif 1KB Image download
12864_2015_2129_Article_IEq12.gif 1KB Image download
12864_2017_3661_Article_IEq3.gif 1KB Image download
12894_2016_184_Article_IEq2.gif 1KB Image download
12864_2017_3733_Article_IEq35.gif 1KB Image download
12864_2017_3733_Article_IEq36.gif 1KB Image download
12864_2015_1944_Article_IEq7.gif 1KB Image download
12864_2015_2297_Article_IEq4.gif 1KB Image download
12864_2017_3733_Article_IEq39.gif 1KB Image download
12864_2017_4020_Article_IEq2.gif 1KB Image download
12864_2017_3733_Article_IEq40.gif 1KB Image download
12864_2017_3733_Article_IEq41.gif 1KB Image download
12864_2016_2388_Article_IEq4.gif 1KB Image download
12864_2017_3733_Article_IEq43.gif 1KB Image download
12864_2017_4271_Article_IEq1.gif 1KB Image download
12864_2017_3781_Article_IEq3.gif 1KB Image download
12870_2015_650_Article_IEq1.gif 1KB Image download
12864_2017_3990_Article_IEq15.gif 1KB Image download
12864_2017_3733_Article_IEq48.gif 1KB Image download
12864_2017_3990_Article_IEq17.gif 1KB Image download
12888_2017_1284_Article_IEq1.gif 1KB Image download
12864_2017_3898_Article_IEq6.gif 1KB Image download
12888_2017_1365_Article_IEq7.gif 1KB Image download
12864_2017_3492_Article_IEq9.gif 1KB Image download
12867_2016_60_Article_IEq1.gif 2KB Image download
12864_2017_3676_Article_IEq5.gif 1KB Image download
12864_2017_3676_Article_IEq6.gif 1KB Image download
12864_2017_3605_Article_IEq16.gif 1KB Image download
12864_2017_3487_Article_IEq58.gif 1KB Image download
12864_2017_3605_Article_IEq18.gif 1KB Image download
12864_2017_4133_Article_IEq38.gif 1KB Image download
12864_2017_3605_Article_IEq20.gif 1KB Image download
12864_2015_2198_Article_IEq15.gif 1KB Image download
12864_2017_4269_Article_IEq4.gif 1KB Image download
12864_2017_4133_Article_IEq43.gif 1KB Image download
12864_2016_2380_Article_IEq1.gif 1KB Image download
12864_2017_3487_Article_IEq65.gif 1KB Image download
12864_2017_3487_Article_IEq66.gif 1KB Image download
12864_2017_3487_Article_IEq67.gif 1KB Image download
12864_2017_3487_Article_IEq69.gif 1KB Image download
12864_2017_4348_Article_IEq5.gif 1KB Image download
12888_2016_951_Article_IEq1.gif 1KB Image download
12864_2017_4363_Article_IEq4.gif 1KB Image download
12864_2017_4363_Article_IEq5.gif 1KB Image download
12864_2017_4363_Article_IEq6.gif 1KB Image download
12864_2016_3263_Article_IEq8.gif 1KB Image download
12864_2016_2789_Article_IEq49.gif 1KB Image download
12864_2016_3263_Article_IEq11.gif 1KB Image download
【 图 表 】

12864_2016_3263_Article_IEq11.gif

12864_2016_2789_Article_IEq49.gif

12864_2016_3263_Article_IEq8.gif

12864_2017_4363_Article_IEq6.gif

12864_2017_4363_Article_IEq5.gif

12864_2017_4363_Article_IEq4.gif

12888_2016_951_Article_IEq1.gif

12864_2017_4348_Article_IEq5.gif

12864_2017_3487_Article_IEq69.gif

12864_2017_3487_Article_IEq67.gif

12864_2017_3487_Article_IEq66.gif

12864_2017_3487_Article_IEq65.gif

12864_2016_2380_Article_IEq1.gif

12864_2017_4133_Article_IEq43.gif

12864_2017_4269_Article_IEq4.gif

12864_2015_2198_Article_IEq15.gif

12864_2017_3605_Article_IEq20.gif

12864_2017_4133_Article_IEq38.gif

12864_2017_3605_Article_IEq18.gif

12864_2017_3487_Article_IEq58.gif

12864_2017_3605_Article_IEq16.gif

12864_2017_3676_Article_IEq6.gif

12864_2017_3676_Article_IEq5.gif

12867_2016_60_Article_IEq1.gif

12864_2017_3492_Article_IEq9.gif

12888_2017_1365_Article_IEq7.gif

12864_2017_3898_Article_IEq6.gif

12888_2017_1284_Article_IEq1.gif

12864_2017_3990_Article_IEq17.gif

12864_2017_3733_Article_IEq48.gif

12864_2017_3990_Article_IEq15.gif

12870_2015_650_Article_IEq1.gif

12864_2017_3781_Article_IEq3.gif

12864_2017_4271_Article_IEq1.gif

12864_2017_3733_Article_IEq43.gif

12864_2016_2388_Article_IEq4.gif

12864_2017_3733_Article_IEq41.gif

12864_2017_3733_Article_IEq40.gif

12864_2017_4020_Article_IEq2.gif

12864_2017_3733_Article_IEq39.gif

12864_2015_2297_Article_IEq4.gif

12864_2015_1944_Article_IEq7.gif

12864_2017_3733_Article_IEq36.gif

12864_2017_3733_Article_IEq35.gif

12894_2016_184_Article_IEq2.gif

12864_2017_3661_Article_IEq3.gif

12864_2015_2129_Article_IEq12.gif

12864_2017_3661_Article_IEq1.gif

12864_2016_2913_Article_IEq23.gif

12864_2015_2129_Article_IEq8.gif

12864_2016_3074_Article_IEq2.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  文献评价指标  
  下载次数:1次 浏览次数:0次