期刊论文详细信息
BMC Genetics
Increased prediction accuracy using a genomic feature model including prior information on quantitative trait locus regions in purebred Danish Duroc pigs
Research Article
Pernille Sarup1  Just Jensen1  Peter Sørensen1  Tage Ostersen2  Mark Henryon2 
[1] Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Allé 20, 8830, Tjele, Denmark;SEGES Danish Pig Research Centre, Axeltorv 3, 1609, Copenhagen V, Denmark;
关键词: Genomic feature models;    GFBLUP;    Feed efficiency;    Average daily gain;    Meat percent;    Growth;    Genomic prediction;   
DOI  :  10.1186/s12863-015-0322-9
 received in 2015-09-08, accepted in 2015-12-20,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundIn animal breeding, genetic variance for complex traits is often estimated using linear mixed models that incorporate information from single nucleotide polymorphism (SNP) markers using a realized genomic relationship matrix. In such models, individual genetic markers are weighted equally and genomic variation is treated as a “black box.” This approach is useful for selecting animals with high genetic potential, but it does not generate or utilise knowledge of the biological mechanisms underlying trait variation. Here we propose a linear mixed-model approach that can evaluate the collective effects of sets of SNPs and thereby open the “black box.” The described genomic feature best linear unbiased prediction (GFBLUP) model has two components that are defined by genomic features.ResultsWe analysed data on average daily gain, feed efficiency, and lean meat percentage from 3,085 Duroc boars, along with genotypes from a 60 K SNP chip. In addition information on known quantitative trait loci (QTL) from the animal QTL database was integrated in the GFBLUP as a genomic feature. Our results showed that the most significant QTL categories were indeed biologically meaningful. Additionally, for high heritability traits, prediction accuracy was improved by the incorporation of biological knowledge in prediction models. A simulation study using the real genotypes and simulated phenotypes demonstrated challenges regarding detection of causal variants in low to medium heritability traits.ConclusionsThe GFBLUP model showed increased predictive ability when enough causal variants were included in the genomic feature to explain over 10 % of the genomic variance, and when dilution by non-causal markers was minimal. In the observed data set, predictive ability was increased by the inclusion of prior QTL information obtained outside the training data set, but only for the trait with highest heritability.

【 授权许可】

CC BY   
© Sarup et al. 2016

【 预 览 】
附件列表
Files Size Format View
RO202311091320802ZK.pdf 1418KB PDF download
12914_2017_112_Article_IEq2.gif 1KB Image download
12864_2016_2682_Article_IEq48.gif 1KB Image download
12864_2015_2296_Article_IEq20.gif 1KB Image download
12864_2017_4274_Article_IEq11.gif 1KB Image download
12864_2017_3527_Article_IEq6.gif 1KB Image download
12864_2017_3527_Article_IEq9.gif 1KB Image download
12864_2017_4186_Article_IEq6.gif 1KB Image download
12864_2017_3731_Article_IEq3.gif 1KB Image download
12864_2017_3836_Article_IEq2.gif 1KB Image download
12864_2017_3731_Article_IEq5.gif 1KB Image download
12864_2015_2055_Article_IEq103.gif 1KB Image download
12864_2017_4130_Article_IEq33.gif 1KB Image download
12864_2017_4186_Article_IEq1.gif 1KB Image download
12864_2016_2793_Article_IEq4.gif 1KB Image download
12864_2017_3790_Article_IEq2.gif 1KB Image download
12906_2015_Article_682_TeX2GIF_IEq2.gif 1KB Image download
12864_2016_3105_Article_IEq10.gif 1KB Image download
12888_2016_877_Article_IEq2.gif 1KB Image download
12864_2015_2192_Article_IEq10.gif 1KB Image download
12864_2017_4196_Article_IEq2.gif 1KB Image download
12864_2015_2192_Article_IEq11.gif 1KB Image download
12864_2017_3503_Article_IEq1.gif 1KB Image download
12864_2015_2192_Article_IEq13.gif 1KB Image download
12864_2015_2192_Article_IEq14.gif 1KB Image download
12864_2016_2871_Article_IEq10.gif 1KB Image download
12864_2017_4228_Article_IEq3.gif 1KB Image download
12888_2016_877_Article_IEq11.gif 1KB Image download
12870_2017_1068_Article_IEq1.gif 1KB Image download
12864_2016_2791_Article_IEq1.gif 1KB Image download
12864_2017_3771_Article_IEq6.gif 1KB Image download
12864_2016_3353_Article_IEq23.gif 1KB Image download
12864_2015_2055_Article_IEq26.gif 1KB Image download
12864_2017_3610_Article_IEq1.gif 1KB Image download
【 图 表 】

12864_2017_3610_Article_IEq1.gif

12864_2015_2055_Article_IEq26.gif

12864_2016_3353_Article_IEq23.gif

12864_2017_3771_Article_IEq6.gif

12864_2016_2791_Article_IEq1.gif

12870_2017_1068_Article_IEq1.gif

12888_2016_877_Article_IEq11.gif

12864_2017_4228_Article_IEq3.gif

12864_2016_2871_Article_IEq10.gif

12864_2015_2192_Article_IEq14.gif

12864_2015_2192_Article_IEq13.gif

12864_2017_3503_Article_IEq1.gif

12864_2015_2192_Article_IEq11.gif

12864_2017_4196_Article_IEq2.gif

12864_2015_2192_Article_IEq10.gif

12888_2016_877_Article_IEq2.gif

12864_2016_3105_Article_IEq10.gif

12906_2015_Article_682_TeX2GIF_IEq2.gif

12864_2017_3790_Article_IEq2.gif

12864_2016_2793_Article_IEq4.gif

12864_2017_4186_Article_IEq1.gif

12864_2017_4130_Article_IEq33.gif

12864_2015_2055_Article_IEq103.gif

12864_2017_3731_Article_IEq5.gif

12864_2017_3836_Article_IEq2.gif

12864_2017_3731_Article_IEq3.gif

12864_2017_4186_Article_IEq6.gif

12864_2017_3527_Article_IEq9.gif

12864_2017_3527_Article_IEq6.gif

12864_2017_4274_Article_IEq11.gif

12864_2015_2296_Article_IEq20.gif

12864_2016_2682_Article_IEq48.gif

12914_2017_112_Article_IEq2.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  文献评价指标  
  下载次数:4次 浏览次数:0次