BMC Biotechnology | |
A novel point mutation in RpoB improves osmotolerance and succinic acid production in Escherichia coli | |
Research Article | |
Hongtao Xu1  Feiyu Fan1  Changhao Bi1  Xueli Zhang1  Jinlei Tang1  Xinna Zhu1  Ru Liu1  Mengyong Xiao2  | |
[1] Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China;Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, 300308, Tianjin, China;Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China;Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, 32 West 7th Ave, Tianjin Airport Economic Park, 300308, Tianjin, China;University of Chinese Academy of Sciences, Beijing, China; | |
关键词: Osmotolerance; RpoB; Succinic acid; Sugar transporter; RNA-seq; | |
DOI : 10.1186/s12896-017-0337-6 | |
received in 2016-08-11, accepted in 2017-02-10, 发布年份 2017 | |
来源: Springer | |
【 摘 要 】
BackgroundEscherichia coli suffer from osmotic stress during succinic acid (SA) production, which reduces the performance of this microbial factory.ResultsHere, we report that a point mutation leading to a single amino acid change (D654Y) within the β-subunit of DNA-dependent RNA polymerase (RpoB) significantly improved the osmotolerance of E. coli. Importation of the D654Y mutation of RpoB into the parental strain, Suc-T110, increased cell growth and SA production by more than 40% compared to that of the control under high glucose osmolality. The transcriptome profile, determined by RNA-sequencing, showed two distinct stress responses elicited by the mutated RpoB that counterbalanced the osmotic stress. Under non-stressed conditions, genes involved in the synthesis and transport of compatible solutes such as glycine-betaine, glutamate or proline were upregulated even without osmotic stimulation, suggesting a “pre-defense” mechanism maybe formed in the rpoB mutant. Under osmotic stressed conditions, genes encoding diverse sugar transporters, which should be down-regulated in the presence of high osmotic pressure, were derepressed in the rpoB mutant. Additional genetic experiments showed that enhancing the expression of the mal regulon, especially for genes that encode the glycoporin LamB and maltose transporter, contributed to the osmotolerance phenotype.ConclusionsThe D654Y single amino acid substitution in RpoB rendered E. coli cells resistant to osmotic stress, probably due to improved cell growth and viability via enhanced sugar uptake under stressed conditions, and activated a potential “pre-defense” mechanism under non-stressed conditions. The findings of this work will be useful for bacterial host improvement to enhance its resistance to osmotic stress and facilitate bio-based organic acids production.
【 授权许可】
CC BY
© The Author(s). 2017
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311090827040ZK.pdf | 1873KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]