期刊论文详细信息
Gut Pathogens
Analysis of the role of the Cronobacter sakazakii ProP homologues in osmotolerance
Roy D Sleator1  Aidan Coffey1  Jim O’Mahony1  Rodney Govender1  Christopher D Johnston1  Audrey Feeney1 
[1] Department of Biological Sciences, Cork Institute of Technology, Rossa Avenue, Bishopstown, Cork, Ireland
关键词: Cronobacter;    Stress;    Osmotolerance;    Proline;    Osmolytes;   
Others  :  817492
DOI  :  10.1186/1757-4749-6-15
 received in 2014-04-09, accepted in 2014-05-14,  发布年份 2014
PDF
【 摘 要 】

Bacteria respond to elevated osmolality by the accumulation of a range of low molecular weight molecules, known as compatible solutes (owing to their compatibility with the cells' normal physiology at high internal concentrations). The neonatal pathogen Cronobacter sakazakii is uniquely osmotolerant, surviving in powdered infant formula (PIF) which typically has a water activity (aw) of 0.2 – inhospitable to most micro-organisms. Mortality rates of up to 80% in infected infants have been recorded making C. sakazakii a serious cause for concern. In silico analysis of the C. sakazakii BAA-894 genome revealed seven copies of the osmolyte uptake system ProP. Herein, we test the physiological role of each of these homologues following heterologous expression against an osmosensitive Escherichia coli host.

【 授权许可】

   
2014 Feeney et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140711004726832.pdf 355KB PDF download
Figure 2. 42KB Image download
Figure 1. 59KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Iversen C, Lehner A, Mullane N, Bidlas E, Cleenwerck I, Marugg J, Fanning S, Stephan R, Joosten H: The taxonomy of Enterobacter sakazakii: proposal of a new genus Cronobacter gen. nov. and descriptions of Cronobacter sakazakii comb. nov. Cronobacter sakazakii subsp. sakazakii, comb. nov., Cronobacter sakazakii subsp. malonaticus subsp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov. and Cronobacter genomospecies 1. BMC Evol Biol 2007, 7(1):64. BioMed Central Full Text
  • [2]Joseph S, Forsythe S: Insights into the emergent bacterial pathogen Cronobacter spp., generated by multilocus sequence typing and analysis. Front Microbiol 2012, 3:1-11.
  • [3]Brady C, Cleenwerck I, Venter S, Coutinho T, De Vos P: Taxonomic evaluation of the genus Enterobacter based on multilocus sequence analysis (MLSA): Proposal to reclassify E. nimipressuralis and E. amnigenus into Lelliottia gen. nov. as Lelliottia nimipressuralis comb. nov. and Lelliottia amnigena comb. nov., respectively, E. gergoviae and E. pyrinus into Pluralibacter gen. nov. as Pluralibacter gergoviae comb. nov. and Pluralibacter pyrinus comb. nov., respectively, E. cowanii, E. radicincitans, E. oryzae and E. arachidis into Kosakonia gen. nov. as Kosakonia cowanii comb. nov., Kosakonia radicincitans comb. nov., Kosakonia oryzae comb. nov. and Kosakonia arachidis comb. nov., respectively, and E. turicensis, E. helveticus and E. pulveris into Cronobacter as Cronobacter zurichensis nom. nov., Cronobacter helveticus comb. nov. and Cronobacter pulveris comb. nov., respectively, and emended description of the genera Enterobacter and Cronobacter. Syst Appl Microbiol 2013, 36(5):309-319.
  • [4]Friedemann M: Epidemiology of invasive neonatal Cronobacter (Enterobacter sakazakii) infections. Eur J Clin Microbiol Infect Dis 2009, 28(11):1297-1304.
  • [5]Nazarowec-White M, Farber JM: Enterobacter sakazakii: a review. Int J Food Microbiol 1997, 34(2):103-113.
  • [6]Forsythe SJ: Enterobacter sakazakii and other bacteria in powdered infant milk formula. Matern Child Nutr 2005, 1(1):44-50.
  • [7]Friedemann M: Enterobacter sakazakii in food and beverages (other than infant formula and milk powder). Int J Food Microbiol 2007, 116(1):1-10.
  • [8]Nazarowec-White M, Farber JM: Incidence, survival, and growth of Enterobacter sakazakii in infant formula. J Food Prot 1997, 60(3):226-230.
  • [9]Caubilla Barron J, Forsythe SJ: Dry stress and survival time of Enterobacter sakazakii and other Enterobacteriaceae in dehydrated powdered infant formula. J Food Prot 2007, 70(9):2111-2117.
  • [10]Al-Nabulsi AA, Osaili TM, Al-Holy MA, Shaker RR, Ayyash MM, Olaimat AN, Holley RA: Influence of desiccation on the sensitivity of Cronobacter spp. to lactoferrin or nisin in broth and powdered infant formula. Int J Food Microbiol 2009, 136(2):221-226.
  • [11]Feeney A, Sleator RD: An in silico analysis of osmotolerance in the emerging gastrointestinal pathogen Cronobacter sakazakii. Bioeng Bugs 2011, 2(5):260-270.
  • [12]Kucerova E, Clifton SW, Xia XQ, Long F, Porwollik S, Fulton L, Fronick C, Minx P, Kyung K, Warren W, Fulton R, Feng D, Wollam A, Shah N, Bhonagiri V, Nash WE, Hallsworth-Pepin K, Wilson RK, McClelland M, Forsythe SJ: Genome sequence of Cronobacter sakazakii BAA-894 and comparative genomic hybridization analysis with other Cronobacter Species. PLoS One 2010, 5(3):e9556.
  • [13]Vieira J, Messing J: The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 1982, 19(3):259-268.
  • [14]Baldwin A, Loughlin M, Caubilla-Barron J, Kucerova E, Manning G, Dowson C, Forsythe S: Multilocus sequence typing of Cronobacter sakazakii and Cronobacter malonaticus reveals stable clonal structures with clinical significance which do not correlate with biotypes. BMC Microbiol 2009, 9(1):223. BioMed Central Full Text
  • [15]Kempf B, Bremer E: OpuA, an osmotically regulated binding protein-dependent transport system for the Osmoprotectant Glycine Betaine in Bacillus subtilis. J Biol Chem 1995, 270(28):16701-16713.
  • [16]Walsh P, Carroll J, Sleator RD: Accelerating in silico research with workflows: a lesson in simplicity. Comput Biol Med 2013, 43(12):2028-2035.
  • [17]Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning A Laboratory Manual, vol. 1–3. New York: Cold Spring Harbor Laboratory Press; 1989.
  • [18]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2 - ΔΔCT method. Methods 2001, 25(4):402-408.
  • [19]Sleator RD, Hill C: Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 2002, 26(1):49-71.
  • [20]Sleator RD, Gahan CG, Hill C: A postgenomic appraisal of osmotolerance in Listeria monocytogenes. Appl Environ Microbiol 2003, 69(1):1-9.
  • [21]Hill C, Cotter PD, Sleator RD, Gahan CGM: Bacterial stress response in Listeria monocytogenes: jumping the hurdles imposed by minimal processing. Int Dairy J 2001, 12:273-283.
  • [22]Milner JL, McClellan DJ, Wood JM: Factors reducing and promoting the effectiveness of proline as an Osmoprotectant in Escherichia coli K12. J Gen Microbiol 1987, 133(7):1851-1860.
  • [23]Christian J: The influence of nutrition on the water relations of Salmonella Oranienburg. Aust J Biol Sci 1955, 8(1):75-82.
  • [24]Sleator RD, Gahan CGM, Abee T, Hill C: Identification and disruption of BetL, a secondary Glycine Betaine transport system linked to the salt tolerance of Listeria monocytogenes LO28. Appl Environ Microbiol 1999, 65(5):2078-2083.
  • [25]Culham DE, Lasby B, Marangoni AG, Milner JL, Steer BA, van Nues RW, Wood JM: Isolation and sequencing of Escherichia coli Gene proP reveals unusual structural features of the Osmoregulatory Proline/Betaine transporter, ProP. J Mol Biol 1993, 229(1):268-276.
  • [26]Sleator RD: Proteins: form and function. Bioeng Bugs 2012, 3(2):80-85.
  • [27]G Chaulk S, Smith-Frieday MN, Arthur DC, Culham DE, Edwards RA, Soo P, Frost LS, Keates RAB, Glover JNM, Wood JM: ProQ Is an RNA Chaperone that controls ProP levels in Escherichia coli. Biochemistry 2011, 50(15):3095-3106.
  • [28]Milner JL, Wood JM: Insertion proQ220::Tn5 alters regulation of proline porter II, a transporter of proline and glycine betaine in Escherichia coli. J Bacteriol 1989, 171(2):947-951.
  • [29]Kunte HJ, Crane RA, Culham DE, Richmond D, Wood JM: Protein ProQ influences osmotic activation of compatible solute transporter ProP in Escherichia coliK-12. J Bacteriol 1999, 181(5):1537-1543.
  • [30]Sheidy DT, Zielke RA: Analysis and expansion of the role of theEscherichia coliProtein ProQ. PLoS One 2013, 8(10):e79656.
  • [31]Sleator RD, Gahan CGM, Hill C: Identification and disruption of theproBA Locus in Listeria monocytogenes: Role of Proline Biosynthesis in salt tolerance and murine infection. Appl Environ Microbiol 2001, 67(6):2571-2577.
  • [32]Mendum ML, Smith LT: Characterization of Glycine Betaine Porter I from Listeria monocytogenes and its roles in salt and chill tolerance. Appl Environ Microbiol 2002, 68(2):813-819.
  • [33]Culham DE, Tripet B, Racher KI, Voegele RT, Hodges RS, Wood JM: The role of the carboxyl terminal α-helical coiled-coil domain in osmosensing by transporter ProP of Escherichia coli. J Mol Recognit 2000, 13(5):309-322.
  • [34]Keates RAB, Culham DE, Vernikovska YI, Zuiani AJ, Boggs JM, Wood JM: Transmembrane Helix I and Periplasmic Loop 1 of Escherichia coli ProP Are Involved in Osmosensing and Osmoprotectant Transport. Biochemistry 2010, 49(41):8847-8856.
  • [35]Tsatskis Y, Khambati J, Dobson M, Bogdanov M, Dowhan W, Wood JM: The osmotic activation of transporter ProP Is tuned by both its C-terminal Coiled-coil and Osmotically induced changes in phospholipid composition. J Biol Chem 2005, 280(50):41387-41394.
  • [36]Sleator RD, Hill C: Food reformulations for improved health: a potential risk for microbial food safety? Med Hypotheses 2007, 69(6):1323-1324.
  • [37]Sleator RD, Hill C: New frontiers in probiotic research. Lett Appl Microbiol 2008, 46(2):143-147.
  • [38]Sleator RD, Banville N, Hill C: Carnitine enhances the growth of Listeria monocytogenes in infant formula at 7 degrees C. J Food Prot 2009, 72(6):1293-1295.
  文献评价指标  
  下载次数:28次 浏览次数:16次