期刊论文详细信息
BMC Bioinformatics
Novel methods to optimize gene and statistic test for evaluation – an application for Escherichia coli
Methodology Article
Ngo Quoc Viet1  Tran Tuan-Anh2  Pham The Bao2  Le Thi Ly3 
[1] Faculty of Information Technology, Ho Chi Minh City University of Pedagogy, 280 An Duong Vuong Street, Ward 4, District 5, Ho Chi Minh City, Vietnam;Faculty of Mathematics and Computer Science, VNUHCM-University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City, Vietnam;School of Biotechnology, VNUHCM-International University, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam;
关键词: Gene optimization;    Neural network;    Bayes’ theorem;    Euclidean distance;    Codon usage bias;    Highly expressed gene;   
DOI  :  10.1186/s12859-017-1517-z
 received in 2016-04-23, accepted in 2017-02-01,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundSince the recombinant protein was discovered, it has become more popular in many aspects of life science. The value of global pharmaceutical market was $87 billion in 2008 and the sales for industrial enzyme exceeded $4 billion in 2012. This is strong evidence showing the great potential of recombinant protein. However, native genes introduced into a host can cause incompatibility of codon usage bias, GC content, repeat region, Shine-Dalgarno sequence with host’s expression system, so the yields can fall down significantly. Hence, we propose novel methods for gene optimization based on neural network, Bayesian theory, and Euclidian distance.ResultThe correlation coefficients of our neural network are 0.86, 0.73, and 0.90 in training, validation, and testing process. In addition, genes optimized by our methods seem to associate with highly expressed genes and give reasonable codon adaptation index values. Furthermore, genes optimized by the proposed methods are highly matched with the previous experimental data.ConclusionThe proposed methods have high potential for gene optimization and further researches in gene expression. We built a demonstrative program using Matlab R2014a under Mac OS X. The program was published in both standalone executable program and Matlab function files. The developed program can be accessed from http://www.math.hcmus.edu.vn/~ptbao/paper_soft/GeneOptProg/.

【 授权许可】

CC BY   
© The Author(s). 2017

【 预 览 】
附件列表
Files Size Format View
RO202311090452043ZK.pdf 1293KB PDF download
12864_2017_4179_Article_IEq31.gif 1KB Image download
12864_2017_3670_Article_IEq11.gif 1KB Image download
12864_2017_4179_Article_IEq34.gif 1KB Image download
12864_2017_3610_Article_IEq3.gif 1KB Image download
12864_2016_2789_Article_IEq20.gif 1KB Image download
12864_2017_4132_Article_IEq27.gif 1KB Image download
12864_2017_4132_Article_IEq28.gif 1KB Image download
12864_2017_4132_Article_IEq30.gif 1KB Image download
12864_2017_3487_Article_IEq38.gif 1KB Image download
12864_2017_4133_Article_IEq18.gif 1KB Image download
12864_2015_2055_Article_IEq34.gif 1KB Image download
12864_2017_3492_Article_IEq1.gif 1KB Image download
12864_2017_3605_Article_IEq3.gif 1KB Image download
【 图 表 】

12864_2017_3605_Article_IEq3.gif

12864_2017_3492_Article_IEq1.gif

12864_2015_2055_Article_IEq34.gif

12864_2017_4133_Article_IEq18.gif

12864_2017_3487_Article_IEq38.gif

12864_2017_4132_Article_IEq30.gif

12864_2017_4132_Article_IEq28.gif

12864_2017_4132_Article_IEq27.gif

12864_2016_2789_Article_IEq20.gif

12864_2017_3610_Article_IEq3.gif

12864_2017_4179_Article_IEq34.gif

12864_2017_3670_Article_IEq11.gif

12864_2017_4179_Article_IEq31.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  文献评价指标  
  下载次数:7次 浏览次数:0次