期刊论文详细信息
Military Medical Research
Enhancing the clinical relevance of haemorrhage prediction models in trauma
Commentary
Max E. R. Marsden1  Zane B. Perkins2  Jared M. Wohlgemut2  Rebecca S. Stoner2  Sankalp Tandle2  Nigel R. M. Tai3  Erhan Pisirir4  William Marsh4  Evangelia Kyrimi4 
[1] Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, E1 2AT, London, UK;Academic Department of Military Surgery and Trauma, Research and Clinical Innovation, The Royal Centre for Defence Medicine, B15 2WB, Birmingham, UK;Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, E1 2AT, London, UK;The Royal London Hospital, Barts Health NHS Trust, E1 1FR, London, UK;Centre for Trauma Sciences, Blizard Institute, Queen Mary University of London, E1 2AT, London, UK;The Royal London Hospital, Barts Health NHS Trust, E1 1FR, London, UK;Academic Department of Military Surgery and Trauma, Research and Clinical Innovation, The Royal Centre for Defence Medicine, B15 2WB, Birmingham, UK;Department of Electronic Engineering and Computer Science, Queen Mary University of London, E1 4NS, London, UK;
关键词: Trauma;    Injury;    Blood transfusion;    Massive transfusion;    Prediction;    Artificial intelligence;    Machine learning;   
DOI  :  10.1186/s40779-023-00476-6
 received in 2023-04-22, accepted in 2023-08-22,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

【 授权许可】

CC BY   
© People´s Military Medical Press 2023

【 预 览 】
附件列表
Files Size Format View
RO202310119107930ZK.pdf 634KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  文献评价指标  
  下载次数:7次 浏览次数:0次