期刊论文详细信息
BMC Health Services Research
Evaluating the efficiency of primary health care institutions in China: an improved three-stage data envelopment analysis approach
Research
Jiamian Xu1  Wanmin Su2  Peixi Wang2  Qingfeng Du3  Yatian Hou4  Mengge Huang4 
[1] General Practice Center, The Seventh Affiliated Hospital, Southern Medical University, 528244, Foshan, Guangdong, People’s Republic of China;General Practice Center, The Seventh Affiliated Hospital, Southern Medical University, 528244, Foshan, Guangdong, People’s Republic of China;School of Nursing and Health, Henan University, 475004, Kaifeng, Henan, People’s Republic of China;General Practice Center, The Seventh Affiliated Hospital, Southern Medical University, 528244, Foshan, Guangdong, People’s Republic of China;School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, People’s Republic of China;School of Nursing and Health, Henan University, 475004, Kaifeng, Henan, People’s Republic of China;
关键词: Primary health care institutions;    Efficiency measurement;    Super-efficiency SBM DEA model;    Three-stage DEA model;    Global benchmarking technique;    External environment factors;    China;   
DOI  :  10.1186/s12913-023-09979-3
 received in 2023-04-09, accepted in 2023-08-28,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundPrimary health care (PHC) institutions are key to realizing the main functions of the health care system. Since the new health care reform in 2009, the Chinese government has invested heavily in PHC institutions and launched favorable initiatives to improve the efficiency of such institutions. This study is designed to gauge the efficiency of PHC institutions by using 2012–2020 panel data covering 31 provinces in China.MethodsThis study applied an improved three-stage data envelopment analysis (DEA) model to evaluate the efficiency of PHC institutions in China. Unlike the traditional three-stage DEA model, the input-oriented global super-efficiency slack-based measurement (SBM) DEA model is used to calculate the efficiency in the first and third stages of the improved three-stage DEA model, which not only allows the effects of environmental factors and random noise to be taken into account but also deal with the problem of slack, super-efficiency and the comparability of interperiod efficiency values throughout the efficiency measurement.ResultsThe results show that the efficiency of PHC institutions has been overestimated due to the impact of external environmental factors and random noise. From 2012 to 2020, the efficiency of PHC institutions displayed a downward trend. Moreover, there are significant differences in the efficiency of PHC institutions between regions, with the lowest efficiency being found in the northeast region. The efficiency of PHC institutions is significantly affected by residents’ annual average income, per capita GDP, population density, the percentage of the population aged 0–14, the percentage of the population aged 65 and older, the number of people with a college education and above per 100,000 residents, and the proportion of the urban population.ConclusionsSubstantial investment in PHC institutions has not led to the expected efficiency gains. Therefore, more effective measures should be taken to improve the efficiency of PHC institutions in China based on local conditions. This study provides a new analytical approach to calculating the efficiency of PHC institutions, and this approach can be applied to efficiency evaluation either in other fields or in other countries.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202310115712568ZK.pdf 4661KB PDF download
13690_2023_1170_Article_IEq50.gif 1KB Image download
13690_2023_1170_Article_IEq51.gif 1KB Image download
13690_2023_1170_Article_IEq53.gif 1KB Image download
MediaObjects/40463_2023_663_MOESM2_ESM.pptx 184KB Other download
Fig. 2 36KB Image download
13690_2023_1170_Article_IEq165.gif 1KB Image download
12951_2023_2095_Article_IEq4.gif 1KB Image download
Fig. 3 1951KB Image download
MediaObjects/41021_2023_279_MOESM1_ESM.docx 271KB Other download
Fig. 2 124KB Image download
Fig. 3 259KB Image download
12951_2023_2095_Article_IEq11.gif 1KB Image download
Fig. 2 49KB Image download
MediaObjects/12974_2023_2867_MOESM5_ESM.jpg 54KB Other download
Fig. 2 1876KB Image download
Fig. 5 1902KB Image download
12888_2023_5142_Article_IEq11.gif 1KB Image download
12888_2023_5142_Article_IEq12.gif 1KB Image download
13690_2023_1170_Article_IEq200.gif 1KB Image download
Fig. 7 4841KB Image download
13690_2023_1170_Article_IEq78.gif 1KB Image download
13690_2023_1170_Article_IEq206.gif 1KB Image download
Fig. 1 17KB Image download
Table 2 138KB Table download
Fig. 1 1945KB Image download
Fig. 1 368KB Image download
Fig. 5 610KB Image download
Fig. 2 330KB Image download
13690_2023_1170_Article_IEq214.gif 1KB Image download
13690_2023_1170_Article_IEq215.gif 1KB Image download
13690_2023_1170_Article_IEq216.gif 1KB Image download
13690_2023_1170_Article_IEq217.gif 1KB Image download
Fig. 2 886KB Image download
13690_2023_1170_Article_IEq219.gif 1KB Image download
13690_2023_1170_Article_IEq220.gif 1KB Image download
MediaObjects/12888_2023_5142_MOESM2_ESM.pdf 185KB PDF download
12888_2023_5172_Article_IEq4.gif 1KB Image download
Fig. 2 201KB Image download
12888_2023_5172_Article_IEq5.gif 1KB Image download
Fig. 3 329KB Image download
13690_2023_1170_Article_IEq81.gif 1KB Image download
Fig. 6 1149KB Image download
Fig. 3 2039KB Image download
MediaObjects/12902_2023_1444_MOESM4_ESM.docx 30KB Other download
40708_2023_201_Article_IEq6.gif 1KB Image download
MediaObjects/13041_2023_1058_MOESM1_ESM.docx 21KB Other download
MediaObjects/12888_2023_5161_MOESM1_ESM.docx 15KB Other download
40708_2023_201_Article_IEq9.gif 1KB Image download
Fig. 3 56KB Image download
Fig. 2 1724KB Image download
Fig. 1 287KB Image download
13690_2023_1170_Article_IEq222.gif 1KB Image download
【 图 表 】

13690_2023_1170_Article_IEq222.gif

Fig. 1

Fig. 2

Fig. 3

40708_2023_201_Article_IEq9.gif

40708_2023_201_Article_IEq6.gif

Fig. 3

Fig. 6

13690_2023_1170_Article_IEq81.gif

Fig. 3

12888_2023_5172_Article_IEq5.gif

Fig. 2

12888_2023_5172_Article_IEq4.gif

13690_2023_1170_Article_IEq220.gif

13690_2023_1170_Article_IEq219.gif

Fig. 2

13690_2023_1170_Article_IEq217.gif

13690_2023_1170_Article_IEq216.gif

13690_2023_1170_Article_IEq215.gif

13690_2023_1170_Article_IEq214.gif

Fig. 2

Fig. 5

Fig. 1

Fig. 1

Fig. 1

13690_2023_1170_Article_IEq206.gif

13690_2023_1170_Article_IEq78.gif

Fig. 7

13690_2023_1170_Article_IEq200.gif

12888_2023_5142_Article_IEq12.gif

12888_2023_5142_Article_IEq11.gif

Fig. 5

Fig. 2

Fig. 2

12951_2023_2095_Article_IEq11.gif

Fig. 3

Fig. 2

Fig. 3

12951_2023_2095_Article_IEq4.gif

13690_2023_1170_Article_IEq165.gif

Fig. 2

13690_2023_1170_Article_IEq53.gif

13690_2023_1170_Article_IEq51.gif

13690_2023_1170_Article_IEq50.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  文献评价指标  
  下载次数:14次 浏览次数:9次