期刊论文详细信息
BMC Medical Research Methodology
Simulation analysis of an adjusted gravity model for hospital admissions robust to incomplete data
Research
Marlies Van der Wee1  Sofie Verbrugge1  Timo Latruwe1  Didier Colle1  Pieter Vanleenhove2  Kwinten Michielsen2 
[1] Department of Information Technology, Ghent University, Technology Lane, 9052, Ghent, Belgium;HICT, MeetDistrict, 9000, Ghent, Belgium;
关键词: Hospital admissions estimation;    Gravity model;    Healthcare planning;    Huff Model;   
DOI  :  10.1186/s12874-023-02033-0
 received in 2022-08-31, accepted in 2023-09-09,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundGravity models are often hard to apply in practice due to their data-hungry nature. Standard implementations of gravity models require that data on each variable is available for each supply node. Since these model types are often applied in a competitive context, data availability of specific variables is commonly limited to a subset of supply nodes.MethodsThis paper introduces a methodology that accommodates the use of variables for which data availability is incomplete, developed for a health care context, but more broadly applicable. The study uses simulated data to evaluate the performance of the proposed methodology in comparison with a conventional approach of dropping variables from the model.ResultsIt is shown that the proposed methodology is able to improve overall model accuracy compared to dropping variables from the model, and that model accuracy is considerably improved within the subset of supply nodes for which data is available, even when that availability is sparse.ConclusionThe proposed methodology is a viable approach to improve the performance of gravity models in a competitive health care context, where data availability is limited, and especially where a the supply nodes with complete data are most relevant for the practitioner.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202310115695059ZK.pdf 1351KB PDF download
Fig. 1 76KB Image download
Fig. 1 737KB Image download
Fig. 1 247KB Image download
13690_2023_1170_Article_IEq29.gif 1KB Image download
Fig. 3 978KB Image download
Fig. 4 1554KB Image download
Fig. 7 850KB Image download
MediaObjects/12944_2023_1914_MOESM1_ESM.docx 29KB Other download
Fig. 1 230KB Image download
Fig. 4 137KB Image download
40677_2023_249_Article_IEq40.gif 1KB Image download
MediaObjects/12888_2023_5131_MOESM3_ESM.pdf 774KB PDF download
40708_2023_202_Article_IEq10.gif 1KB Image download
Fig. 3 34KB Image download
Fig. 7 498KB Image download
Fig. 1 4774KB Image download
Fig. 8 608KB Image download
Fig. 3 63KB Image download
Fig. 12 310KB Image download
【 图 表 】

Fig. 12

Fig. 3

Fig. 8

Fig. 1

Fig. 7

Fig. 3

40708_2023_202_Article_IEq10.gif

40677_2023_249_Article_IEq40.gif

Fig. 4

Fig. 1

Fig. 7

Fig. 4

Fig. 3

13690_2023_1170_Article_IEq29.gif

Fig. 1

Fig. 1

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  文献评价指标  
  下载次数:3次 浏览次数:0次