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Abstract 

Background  Gravity models are often hard to apply in practice due to their data-hungry nature. Standard imple-
mentations of gravity models require that data on each variable is available for each supply node. Since these model 
types are often applied in a competitive context, data availability of specific variables is commonly limited to a subset 
of supply nodes.

Methods  This paper introduces a methodology that accommodates the use of variables for which data availabil-
ity is incomplete, developed for a health care context, but more broadly applicable. The study uses simulated data 
to evaluate the performance of the proposed methodology in comparison with a conventional approach of dropping 
variables from the model.

Results  It is shown that the proposed methodology is able to improve overall model accuracy compared to drop-
ping variables from the model, and that model accuracy is considerably improved within the subset of supply nodes 
for which data is available, even when that availability is sparse.

Conclusion  The proposed methodology is a viable approach to improve the performance of gravity models 
in a competitive health care context, where data availability is limited, and especially where a the supply nodes 
with complete data are most relevant for the practitioner.
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Introduction
Context
Facility location planning is commonly supported by 
gravity models. Gravity models identify a set of attraction 
poles, and based on attributes of the poles, an audience is 
attracted from a set of demand nodes. Attraction decays 

as geographical proximity decreases. By fitting gravity 
models to observed demand patterns, planners are able to 
derive rough rules on which demand volumes to expect, 
given a certain context. That context includes attributes 
of the pole, but also the competitive landscape the pole is 
located in, and attributes of demand nodes or even of the 
relationship between demand and supply nodes. A simple 
model might assert that the size of a supply node is what 
determines its attraction. Subsequently, this model might 
be fitted to empirical data of actual locations and market 
shares. As a result, the model would allow us to express 
the importance of size as a source of attraction and the 
amplitude of distance decay. Moreover, it could allow us 
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to project derived patterns to, for instance, a hypothetical 
new supply node, yielding insight into its potential.

A common challenge in gravity modeling is feeding the 
models with data, especially if more sophisticated attrac-
tion variables are introduced. Imagine, for instance, the 
case of a retail chain considering to open a new store. The 
chain might have information on the location, size, and 
market share of all of the competitors in the region, and 
have additional details for its own stores, but lack this 
additional information for competing stores. Concretely, 
the chain could have carried out a survey to measure 
the reputation of its stores, but lack this variable for the 
competition. Therefore, the chain cannot introduce rep-
utation as a factor of attraction in its modeling effort, 
because standard gravity models require this information 
for all attraction poles in the scope.

The challenge of incomplete data is addressed in this 
paper. First, a model is developed that supports distinc-
tions between locations with and without values for par-
ticular attraction variables. Next, the performance of 
this model type is analyzed. Concretely, the accuracy of 
estimated effect sizes, i.e. the parameter coefficients, is 
reviewed as a function of the actual effect size, and the 
size of the sample for which complete data is available. 
Using simulated data with particular characteristics, it 
is possible to review results at various underlying condi-
tions and draw conclusions on the meaning and value of 
estimates from this type of model.

The context of this paper is healthcare, specifically hos-
pital facility planning. Therefore the scale, location, and 
number of facilities in our examples are set with this con-
text in mind. Assumptions that have to be made in the 
course of the paper are likewise based on what is most 
appropriate in the hospital context. Nonetheless, the 
model could just as well be applied in a different context.

Relevant literature
Limited data availability is a common challenge, since 
gravity models require quite extensive data availabil-
ity. Several types of input data are commonly unavail-
able. First, the geographical origin of patients or clients 
is often missing. In those circumstances, distance decay 
coefficients cannot be empirically fitted. One approach is 
to assume them to be equal to coefficients found in other 
studies. Second, data for variables that could impact 
attraction is not always available or not always entirely 
available. In a gravity model analysis, entries for all supply 
nodes are required. It makes sense that in a competitive 
context, data might be available for some supply nodes 
and not for others, for reasons ranging from willingness 
to participate and share data, a lack of measurement in 
particular subgroups, to an inconsistent measurement 

methodology across groups. This work focuses on using 
data with the latter types of gaps.

In this paper, a gravity model is adjusted to be robust 
for missing data. Alternatively, aside from param-
eter assumptions, gaps in the data could be imputed. 
Widely used imputation techniques are mean imputa-
tion, median imputation, k-nearest neighbours (kNN) 
imputation, predictive mean matching (pmm) imputa-
tion, Bayesian Linear regression, non-Bayesian Linear 
regression, and Sample imputation methods [6]. Since it 
can introduce bias into the model, imputation requires 
careful consideration. For instance, mean or median 
imputation reduces the standard deviation of the con-
sidered variable, while regression imputation induces 
a linear relationship between attributes where the rela-
tionship might not be linear. The impact of missing data 
imputation has been reviewed by Brown and Kros [3] 
and Mishra and Khare [9], the latter analyzing different 
imputation methodologies using simulation. Generally 
data imputation is done when only few data points are 
missing. Jadhav et al. [6] advises a comparison of results 
before and after imputation if more than 25% of data is 
missing. The largest proportion of missing data that is 
worked with by Mishra and Khare [9] is 50%.

Comparing these approaches with the research 
described in this paper, two important distinctions 
should be highlighted aside from differences in meth-
odology and model type. First, the authors are not only 
interested in the overall performance of parameter esti-
mates for the full data sample, but also in the perfor-
mance of estimates within a subgroup of supply nodes. 
Concretely, the subgroup for which data is not missing 
is studied separately because it often is the most rele-
vant subgroup for practitioners. For instance, a network 
of hospitals, with exhaustive internal data, is likely even 
more interested in their own performance than in that of 
competitors. Second, this paper studies estimation accu-
racy in the context of more sparsely available data, with 
5% up to 95% of data missing.

Data imputation is common in models that use large 
datasets and many variables. For gravity-type mod-
els in particular, little research work explicitly identifies 
data imputation in their methodology and none that the 
authors are aware of evaluates the impact of missing data. 
Shen and Aydin [10] is one exception that estimates miss-
ing cells in origin-destination matrices with a regression 
approach.

In a healthcare context, gravity models have been applied 
extensively [5], often with the objective to identify relevant 
catchment or service areas [7] or to evaluate accessibility of 
healthcare facilities [4, 11]. Not many studies explicitly dis-
cuss challenges related to data availability, and most com-
monly, effects of distance and size in terms of the number of 
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beds are the only parameters that are estimated. This focus 
on accessibility exists partially because attraction by hospi-
tals in a competitive context is often not the focus of a study, 
or less relevant depending on the healthcare system type.

Objectives
The objectives in this paper are twofold. First, this paper 
validates or falsifies the efficacy of a gravity model type 
that distinguishes between locations based on the availabil-
ity of data for those locations. Second, the paper describes 
the performance of this model type under various condi-
tions, so that planners can better identify whether or not 
the model type would yield sufficiently good results in their 
context.

Theoretical framework
In this section, the performed experiments are described. 
First, the model that accommodates missing data is speci-
fied. Second, we detail how estimation of the model is 
done. Third, the method for data generation is elaborated 
on. Lastly, the concrete experiments applied to the models 
are described.

Model description
Generically, the model can be described as follows:

With

Equation (1) consists of several components. First 
the fraction on the right-hand side yields the estimated 
market share of facility j in node i. The market share, or 
the probability that a decision-maker in node i chooses 
facility j as a supplier, equals the perceived utility of j by 
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Vij = Volume of demand for facility j in node i.

Bj = Binary variable indicating whether facility j is part of the set for

which all data is available.

BM = Benchmarking parameter.

|F | = Set of attraction variables Af for which data is available for all facilities.

|F́ | = Set of attraction variables Áf for which data is available for a fixed

subset of facilities.

Af = Attraction variable part of set |F |.

Áf = Attraction variable part of set |F́ |.

γf =Parameter modulating the effects of variable Af .

γ́f =Parameter modulating the effects of variable Áf .

Dij = Great-circle distance between facility j and i in kilometers.

DF = Parameter modulating the effects of variable Dij .

AAij = Result of the numerator for combination for facility j and node i.

the decision-maker in i divided by the sum of perceived 
utility of all alternative suppliers, expressed in a multi-
plicative utility function. The perceived utility function 
consists of two subcomponents: the utility-generating 
component and a distance decay component. The utility-
generating component is the product of a set of variables 
| F | that are expected to positively affect perceived util-
ity. The distance decay component is a function of the 
proximity of i and j, in this case an exponential function.

In this particular model, a mechanism is added in 
order to accommodate the lack of complete data for a set 
of variables | F́ | . Imagine, for instance, a regional study 
that yields values for a variable that is expected to affect 
perceived utility, such as reputation. The study does not 
cover the entire set of facilities that we want to study, but 
rather a subset | F́ | . Since the numerator of the generic 
model described above is the sum of the utility of all 
alternatives, we would need a value for the reputation 
variable for all facilities in order to be able to apply it.

The model presented in Eq. (1) addresses this issue 
with two interventions. First, it introduces a binary 
variable Bj to distinguish the utility function of facilities 
for which values for all variables are available from that 
of facilities without complete data. Second, it applies 
a parameter BM to the utility of hospitals for which 
all data is available to correct for the utility advantage 
that the extra variables bring. Since the variables are 
all positively correlated with utility, and are exclusively 
positive, any value, even a relatively low one, yields a 
comparative advantage with respect to facilities for 
which the variable is not included at all. The benchmark 
parameter BM should adopt a value such that it reflects 
(the inverse of ) the average multiplication of utility that 
would be expected if values for the variables would be 
available. We choose to correct downwards the utility 
of facilities with full data rather than upwards the util-
ity of facilities without full data because this implies 
that BM will take a value between 0 and 1.

In the example where reputation is the variable whose 
values are incomplete, we would expect that if reputa-
tion has a large effect on perceived utility, parameter BM 
would be low, because leveling the playing field given the 
absence of values for some facilities will require a more 
significant downward revision of their competitors’ util-
ity. Implicit in this methodology is the assumption that 
the facilities whose reputation values are missing have 
an average reputation value, though specification of the 
average value is not required.

Model estimation
The model presented in Eq. (1) cannot, as far as the 
authors know, be made linear in the parameters. The 
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model is fitted without prior transformation using simu-
lated annealing. The python package SciPy [13] is used, 
and 2000 iterations per fitting process are done before 
the solution with the minimal Mean of Squared Errors 
(MSE) is selected. After each round of annealing, local 
search with a maximum of 100 iterations is applied using 
the L-BFGS-B algorithm [14]. The error is defined as 
the difference between the observed number of demand 
for supply facility j and the estimated number given the 
parameter instances.

Data simulation
A data simulator was designed for the purpose of this 
research. In order to generate datasets with particular 
characteristics, five steps are followed. First, (1) a data-
set is given that represents the facility and demand nodes 
(areas) that data will be generated for. Next, (2) random 
instances are generated for the variables under consid-
eration. Subsequently, (3) utility per facility is calculated 
based on the generated variables and their parameters, 
which is (4) translated into market shares or choice prob-
abilities. Lastly, (5) discrete demand is generated accord-
ing to the choice probabilities.

The initial dataset provided to the generator (1) con-
tains the locations of, and distance between, all supply 
and demand nodes. It thus has J × I rows, with J the total 
number of facilities j, and I the number of areas i. In addi-
tion, it contains total market size per area i. Using pre-set 
configurations, (2) values are drawn from probability dis-
tributions that reflect expected values per attraction vari-
able in the model. Values can be set on the supply-node 
level, if the factor describes a characteristic of the node, 
or on a combination of supply node and demand node, 
if the factor describes a characteristic of the relationship 
between the two, such as localized reputation. A genera-
tor for the value can be given, supporting the use of vari-
ous probability distributions. For the reputation variable 
REPJ , a normal distribution with mean 10 and standard 
deviation 2.8 is used.

At this point in the process, values for all of the attrac-
tion variables in the model are available. The exponent 
of each attraction variable, signifying effect size, is made 
available in the pre-set configuration. The exponent can 
be based on actual measurements, or be set arbitrar-
ily as required to perform the experiments in this paper. 
Given this input, the perceived utility of each facility j for 
each demand area i according to the multiplicative utility 
function can be computed (3). The translation of utilities 
into market shares or choice probabilities is the same as 
the share of a facility’s utility in the utilities of all of the 
alternative supply nodes for an area (4).

Subsequently (5), the set of choice probabilities for 
all facilities per area i, which together form a multino-
mial probability distribution, are used to generate dis-
crete demand volumes. Concretely, the Python function 
choices from the package random is used, with the array 
of probabilities as weights, and the number of demand 
units for the full area i as k.

Experiments
The concrete experiments performed in this research are 
modeled on the scale and structure of hospital facilities in 
the Flemish market. The locations of supply nodes used 
are derived from the locations of hospitals in Flanders, 
excluding Brussels. This corresponds with 89 campuses 
or facilities across the geographical area. The locations 
of the demand nodes or areas i are the centroids of each 
geographical unit. In total, 9139 units are used, as delim-
ited by STATBEL [12], and corresponding to the Flanders 
area except Brussels. The size attraction factor is also set 
to the actual size quantified as the number of recognized 
beds of each facility. The reputation factors and observed 
demand are generated by the process described in sec-
tion “Data simulation”. For each of the following experi-
ments, size and reputation are included as attraction 
variables. The exponent of size is set at 0.92, which is a 
realistic value for this sample and context, as derived in 
other work [8]. Reputation will be the randomly selected 
factor. Its exponent will be varied between 0.1 and 1.3. 
The number of facilities for which reputation informa-
tion is available is varied between 5 and 100%. For each of 
these combinations, five runs are executed, which yields 
700 runs in total.

A couple of results are expected. First, the accuracy of 
reputation exponent estimates is expected to improve as 
the number of facilities for which reputation is available 
increases. Second, it is expected that the relative accu-
racy will increase as the effect size increases.

With each experiment, the sources of variation are 
limited as much as possible in order to limit noise. The 
reputation values are generated only once, and reused 
per variation in exponent or number of facilities with 
full information. For variations in the number of facilities 
with data available while keeping the effect size equal, the 
patient volumes can be kept identical since they are unaf-
fected by that type of variation.

Results
First, the balancing mechanism of the model is evaluated. 
Figure 1 shows the relationship between α , the coefficient 
of the reputation parameter, and BM. As intended, the 
two are closely related. The BM parameter scales down 
the utility for facilities that lack reputation information. 
Accordingly, it is strongly related to the strength of the 
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impact of reputation, as measured by α . Given that the 
relationship between α and BM should theoretically be 
perfect, it should be possible to write BM as a function 
of α and remove it as a parameter that needs to be esti-
mated. This paper does not explore this avenue further.

Next, the effect of the proportion of facilities for which 
reputation information is available is evaluated. Figure 2 
shows the results of parameter estimates for α , plotted 
against data availability. It is observed that a tendency 
exists for the accuracy of estimates to improve as the pro-
portion of facilities for which reputation data is available 
is increased. For each combination of p and effect size, 
three observations are available.

The Breusch-Pagan test [2] is used to evaluate whether 
the error variances are a multiplicative function of p, 
which represents the proportion of the data that is not 
missing. The p-value of the F-statistic does not yield 
a statistically significant value that would confirm the 
expected heteroskedastic pattern in the residuals.

In addition, the impact of effect size on estimation 
accuracy is reviewed. Figure 3 suggests a lower absolute 
estimation accuracy at higher effect sizes.

Aside from evaluating the efficacy of estimating the 
reputation parameter, the overall performance of the 
model is assessed. Figure 4 shows that a clear relationship 
exists between model accuracy and reputation sample 
size. As expected, the effect size does not systematically 
affect the model accuracy when reputation data is avail-
able for each point. When only limited data is available, 
however, effect size positively correlates with the error 
metrics, reflecting the conditions that were introduced 
into the dataset. Concretely, the reputation effects at 
work in the cases where the reputation variable is not 
available are a cause of unmodelled variation in the data. 
Two boundary scenarios are shown, along with scenarios 

in which the degree of data availability differs in between. 
The control boundary scenario is one in which the repu-
tation parameter is left out of the model, it is the result 
obtained when fitting a classic gravity model that uses 
the facility size parameter as an attraction factor, and 
none other. The 100% boundary scenario is one in which 
there is full data availability, meaning that reputation data 
points are available for each facility. These scenarios show 
how the overall Mean Average Percentage Error (MAPE) 
generally improves as more reputation data points are 
available and used.

An interesting and perhaps more crucial question is 
how the model has performed within the group of facili-
ties for which the additional data was available. After 
all, the primary user of this model type is likely most 
interested in this scope. Table  1 shows that the MAPE 
is markedly better for facilities for which the reputation 
variable is available and used. Given a limited reputation 
data availability of 25%, and a relatively strong effect size 
of 0.7, the in-group estimates have a MAPE of 5.6%, while 
the out-group estimates have a MAPE of 13.2%. The latter 
is close to the accuracy achieved when not using the rep-
utation variable in the model at all (14.4%). This observa-
tion is consistent across effect sizes and data availability. 
The out-group estimates are about as accurate as those of 
a model that does not use the reputation variable. Even 
for cases with low data availability, improvements of in-
group accuracy can be considerable, as shown in Fig. 5.

Nonetheless, the variance of the MAPE is relatively 
high, especially in cases where the number of observa-
tions of the variables with missing values is small. Despite 
that, the upper bounds of the 95% confidence intervals of 
the MAPE for the in-group with sample size above 10% is 
consistently lower than the MAPE measured when dis-
carding the variable.

Fig. 1  The graph shows the relationship between α and the balancing parameter BM across all experiments: 5 runs for 7 effect sizes, and 19 sample 
sizes (increments of 0.05 starting at 0.05 up to 0.95), yielding 665 observations
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Discussion
The experiments in this research show that it is possible 
and can be effective to include variables in gravity mod-
els for which only limited data is available. The evidence 

the experiments provide is generated under particular, 
though broadly relevant, conditions. First and foremost, 
the input data is simulated in a process that produces the 
type of structure that a gravity model is meant to reflect. 

Fig. 2  For different effect sizes, the figure shows the estimated effect size by the model. P is the proportion of facilities for which reputation data 
is made available to the model

Fig. 3  The figure shows four scatterplots of different data availability scenarios that compare the estimated effect size of the reputation parameter 
and its value as introduced in the generated dataset
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Despite empirical successes, gravity models have often 
been criticized for lacking sound theoretical underpin-
nings [1]. Correspondingly, there is no strong theoreti-
cal basis to justify the assertion that the generated data 
should adopt this structure. Second, due to limited 
resources, the behaviour and performance of the model 
has not been evaluated in all possible circumstances. 
Concretely, relevant circumstances that are not studied 
might be larger numbers of nodes, significant differences 
in the ratio of demand and supply nodes and related aver-
age proximity, the use of more explanatory variables in 
the model, or the use of different probability distributions 
for the explanatory variables.

Within these bounds, this research shows that sig-
nificant improvements in model performance can be 
achieved. If a variable is dropped because of incomplete 
data, a loss of accuracy occurs that is plainly and strongly 
related to the effect size of the variable. In contrast, 
including even sparsely available data using the described 

methodology improves the accuracy of the model mark-
edly for those supply nodes for which data is available 
without adversely affecting accuracy for supply nodes 
that lack the relevant data. Accordingly, this evidence 
suggests that adding sparsely available data in gravity 
models can provide incremental improvements for varia-
bles with a small impact to sharp improvements for those 
with a high impact. On average in cases of sparsely avail-
able (25%) data, the improvement of the MAPE is 61.3% 
for the in-group as compared to a model that excludes 
the incomplete variable.

Future work
As this research shows, it is possible to improve the 
results of a gravity model by including variables for 
which data is incomplete with adjustments of the model 
specification. Nonetheless, it has not been evaluated 
how this methodology compares to data imputation 

Fig. 4  The figure on the left shows the relationship between the most important error metric, the Mean Average Percentage Error (MAPE), and data 
availability for effect sizes 0.9 and 0.3. The figure on the right shows the average MAPE for different data availabilities plotted against the effect size

Table 1  Shows demand estimation accuracy in subgroups of the analysis. Concretely, the MAPE on the facility level is measured for 
the group of facilities that has data available for the reputation variable, and for the group that does not

Proportion of facilities with available reputation data

25% 50% 75% 100% 0%

 Effect size MAPE (in) MAPE (out) MAPE (in) MAPE (out) MAPE (in) MAPE (out) MAPE MAPE

0.1 1.1% 2.2% 1.0% 2.1% 1.0% 2.1% 0.8% 2.2%

0.3 1.9% 5.9% 1.4% 6.0% 1.4% 5.7% 0.8% 6.0%

0.5 3.9% 9.8% 2.6% 9.4% 1.6% 9.0% 0.8% 9.9%

0.7 5.6% 13.2% 3.7% 12.8% 2.2% 13.3% 0.9% 14.4%

0.9 6.5% 18.6% 4.1% 16.9% 2.4% 18.4% 0.8% 19.5%

1.1 10.9% 22.6% 5.2% 23.5% 3.2% 23.5% 0.8% 24.4%

1.3 9.7% 27.2% 6.7% 30.5% 5.1% 28.7% 0.8% 30.1%



Page 8 of 9Latruwe et al. BMC Medical Research Methodology          (2023) 23:215 

techniques. An interesting avenue for further research is 
clarifying the relationship between the proposed meth-
odology and data imputation techniques, along with the 
evaluation of their comparative performance. A general 
gap in data imputation literature is the evaluation of per-
formance within the subgroup for which data is avail-
able. In the context of this specific paper, gaps in the data 
are not random or coincidental, and accordingly, sub-
group performance has a specific and relevant meaning. 
A comparison with imputation techniques should review 
this dimension of performance specifically.
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