International Journal of Coal Science & Technology | |
Fracture propagation laws of staged hydraulic fracture in fractured geothermal reservoir based on phase field model | |
Research | |
Genbo Peng1  | |
[1] School of Environment, Liaoning University, 110036, Shenyang, China; | |
关键词: Hot dry rock; Enhanced geothermal system; Phase field model; Fracture propagation; | |
DOI : 10.1007/s40789-023-00636-y | |
received in 2023-06-13, accepted in 2023-08-10, 发布年份 2023 | |
来源: Springer | |
【 摘 要 】
Hydraulic fracturing is widely used in geothermal resource exploitation, and many natural fractures exist in hot dry rock reservoirs due to in-situ stress and faults. However, the influence of natural fractures on hydraulic fracture propagation is not considered in the current study. In this paper, based on the phase field model, a thermo-hydro-mechanical coupled hydraulic fracture propagation model was established to reveal the influence of injection time, fracturing method, injection flow rate, and natural fracture distribution on the fracture propagation mechanism. The results show thatfracture complexity increases with an increase in injection time. The stress disturbance causes the fracture initiation pressure of the second cluster significantly higher than that of the first and third clusters. The zipper-type fracturing method can reduce the degree of stress disturbance and increase fracture complexity by 7.2% compared to simultaneous hydraulic fracturing. Both low and high injection flow rate lead to a decrease in fracture propagation time, which is not conducive to an increase in fracture complexity. An increase in thenatural fracture angle leads to hydraulic fracture crossing natural fracture, but has a lesser effect on fracture complexity. In this paper, we analyzed the influence of different factors on initiation pressure and fracture complexity, providing valuable guidance for the exploitation of geothermal resources.
【 授权许可】
CC BY
© China Coal Research Institute 2023
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202310113811271ZK.pdf | 3030KB | download | |
12888_2023_5172_Article_IEq1.gif | 1KB | Image | download |
12936_2023_4724_Article_IEq33.gif | 1KB | Image | download |
MediaObjects/12888_2023_5142_MOESM1_ESM.pdf | 126KB | download | |
13690_2023_1170_Article_IEq219.gif | 1KB | Image | download |
MediaObjects/12888_2023_5142_MOESM2_ESM.pdf | 185KB | download | |
13690_2023_1170_Article_IEq222.gif | 1KB | Image | download |
Fig. 3 | 1298KB | Image | download |
Fig. 4 | 710KB | Image | download |
Fig. 9 | 86KB | Image | download |
Fig. 3 | 407KB | Image | download |
13690_2023_1170_Article_IEq97.gif | 1KB | Image | download |
MediaObjects/40337_2023_888_MOESM1_ESM.docx | 15KB | Other | download |
Fig. 6 | 3544KB | Image | download |
Fig. 2 | 203KB | Image | download |
12888_2023_5172_Article_IEq18.gif | 1KB | Image | download |
Fig. 1 | 113KB | Image | download |
42004_2023_995_Article_IEq44.gif | 1KB | Image | download |
Fig. 3 | 1148KB | Image | download |
12888_2023_5172_Article_IEq33.gif | 1KB | Image | download |
12888_2023_5172_Article_IEq35.gif | 1KB | Image | download |
MediaObjects/41408_2023_920_MOESM2_ESM.docx | 2312KB | Other | download |
【 图 表 】
12888_2023_5172_Article_IEq35.gif
12888_2023_5172_Article_IEq33.gif
Fig. 3
42004_2023_995_Article_IEq44.gif
Fig. 1
12888_2023_5172_Article_IEq18.gif
Fig. 2
Fig. 6
13690_2023_1170_Article_IEq97.gif
Fig. 3
Fig. 9
Fig. 4
Fig. 3
13690_2023_1170_Article_IEq222.gif
13690_2023_1170_Article_IEq219.gif
12936_2023_4724_Article_IEq33.gif
12888_2023_5172_Article_IEq1.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]