期刊论文详细信息
Frontiers in Pediatrics
Identifying predictors of clinical outcomes using the projection-predictive feature selection—a proof of concept on the example of Crohn’s disease
Pediatrics
Sarah Schiller1  Michael Radke1  Benjamin Schiller1  Elisa Wirthgen2  Jan Däbritz3  Frank Weber4  Laura Kubickova-Weber5 
[1] Department of Pediatrics, Pediatric Gastroenterology, Rostock University Medical Center, Rostock, Germany;Department of Pediatrics, Rostock University Medical Center, Rostock, Germany;Department of Pediatrics, Rostock University Medical Center, Rostock, Germany;Department of Pediatrics, Pediatric Gastroenterology, Rostock University Medical Center, Rostock, Germany;Department of Pediatrics, Greifswald University Medical Center, Greifswald, Germany;Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany;Medical School, University of Rostock, Rostock, Germany;
关键词: inflammatory bowel disease;    endoscopy;    calprotectin;    C-reactive protein;    monitoring;    Bayesian;    ordinal regression model;    Shiny application;   
DOI  :  10.3389/fped.2023.1170563
 received in 2023-02-21, accepted in 2023-07-11,  发布年份 2023
来源: Frontiers
PDF
【 摘 要 】

ObjectivesSeveral clinical disease activity indices (DAIs) have been developed to noninvasively assess mucosal healing in pediatric Crohn’s disease (CD). However, their clinical application can be complex. Therefore, we present a new way to identify the most informative biomarkers for mucosal inflammation from current markers in use and, based on this, how to obtain an easy-to-use DAI for clinical practice. A further aim of our proof-of-concept study is to demonstrate how the performance of such a new DAI can be compared to that of existing DAIs.MethodsThe data of two independent study cohorts, with 167 visits from 109 children and adolescents with CD, were evaluated retrospectively. A variable selection based on a Bayesian ordinal regression model was applied to select clinical or standard laboratory parameters as predictors, using an endoscopic outcome. The predictive performance of the resulting model was compared to that of existing pediatric DAIs.ResultsWith our proof-of-concept dataset, the resulting model included C-reactive protein (CRP) and fecal calprotectin (FC) as predictors. In general, our model performed better than the existing DAIs. To show how our Bayesian approach can be applied in practice, we developed a web application for predicting disease activity for a new CD patient or visit.ConclusionsOur work serves as a proof-of-concept, showing that the statistical methods used here can identify biomarkers relevant for the prediction of a clinical outcome. In our case, a small number of biomarkers is sufficient, which, together with the web interface, facilitates the clinical application. However, the retrospective nature of our study, the rather small amount of data, and the lack of an external validation cohort do not allow us to consider our results as the establishment of a novel DAI for pediatric CD. This needs to be done with the help of a prospective study with more data and an external validation cohort in the future.

【 授权许可】

Unknown   
© 2023 Wirthgen, Weber, Kubickova-Weber, Schiller, Schiller, Radke and Däbritz.

【 预 览 】
附件列表
Files Size Format View
RO202310103348609ZK.pdf 8866KB PDF download
  文献评价指标  
  下载次数:17次 浏览次数:0次