期刊论文详细信息
EPJ Data Science
Towards hypergraph cognitive networks as feature-rich models of knowledge
Regular Article
Simon De Deyne1  Massimo Stella2  Salvatore Citraro3  Giulio Rossetti3 
[1] Computational Cognitive Science Lab, University of Melbourne, Melbourne, Australia;Department of Psychology and Cognitive Science, University of Trento, Corso Bettini, 84, Trento, Italy;Institute of Information Science and Technologies “A. Faedo” (ISTI), National Research Council (CNR), Via G. Moruzzi, 1, Pisa, Italy;
关键词: Cognitive networks;    Free associations;    Feature-rich networks;    Hypergraphs;   
DOI  :  10.1140/epjds/s13688-023-00409-2
 received in 2022-11-18, accepted in 2023-07-31,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Conceptual associations influence how human memory is structured: Cognitive research indicates that similar concepts tend to be recalled one after another. Semantic network accounts provide a useful tool to understand how related concepts are retrieved from memory. However, most current network approaches use pairwise links to represent memory recall patterns (e.g. reading “airplane” makes one think of “air” and “pollution”, and this is represented by links “airplane”-“air” and “airplane”-“pollution”). Pairwise connections neglect higher-order associations, i.e. relationships between more than two concepts at a time. These higher-order interactions might covariate with (and thus contain information about) how similar concepts are along psycholinguistic dimensions like arousal, valence, familiarity, gender and others. We overcome these limits by introducing feature-rich cognitive hypergraphs as quantitative models of human memory where: (i) concepts recalled together can all engage in hyperlinks involving also more than two concepts at once (cognitive hypergraph aspect), and (ii) each concept is endowed with a vector of psycholinguistic features (feature-rich aspect). We build hypergraphs from word association data and use evaluation methods from machine learning features to predict concept concreteness. Since concepts with similar concreteness tend to cluster together in human memory, we expect to be able to leverage this structure. Using word association data from the Small World of Words dataset, we compared a pairwise network and a hypergraph with N=3586\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$N= 3586$\end{document} concepts/nodes. Interpretable artificial intelligence models trained on (1) psycholinguistic features only, (2) pairwise-based feature aggregations, and on (3) hypergraph-based aggregations show significant differences between pairwise and hypergraph links. Specifically, our results show that higher-order and feature-rich hypergraph models contain richer information than pairwise networks leading to improved prediction of word concreteness. The relation with previous studies about conceptual clustering and compartmentalisation in associative knowledge and human memory are discussed.

【 授权许可】

CC BY   
© Springer-Verlag GmbH, DE 2023

【 预 览 】
附件列表
Files Size Format View
RO202309156681237ZK.pdf 3694KB PDF download
MediaObjects/12888_2023_5017_MOESM1_ESM.pdf 18KB PDF download
13570_2023_282_Article_IEq16.gif 1KB Image download
13570_2023_282_Article_IEq19.gif 1KB Image download
13570_2023_282_Article_IEq21.gif 1KB Image download
Fig. 4 253KB Image download
Fig. 1 92KB Image download
MediaObjects/12888_2023_5032_MOESM1_ESM.pdf 206KB PDF download
711KB Image download
Fig. 6 614KB Image download
MediaObjects/13046_2023_2774_MOESM4_ESM.docx 18KB Other download
Fig. 3 1592KB Image download
13750_2023_309_Article_IEq64.gif 1KB Image download
Fig. 1 1743KB Image download
Fig. 1 998KB Image download
Fig. 1 5078KB Image download
Fig. 7. 2822KB Image download
Fig. 5 74KB Image download
Fig. 1 44KB Image download
Fig. 4 539KB Image download
Fig. 6 1327KB Image download
13731_2023_311_Article_IEq7.gif 1KB Image download
Fig. 1 1296KB Image download
MediaObjects/12974_2023_2872_MOESM2_ESM.docx 897KB Other download
Table 2 887KB Table download
Fig. 3 4074KB Image download
Fig. 3 208KB Image download
41512_2023_153_Article_IEq65.gif 1KB Image download
Fig. 2 441KB Image download
Fig. 4 215KB Image download
Fig. 14 2661KB Image download
Fig. 4 236KB Image download
Fig. 1 983KB Image download
Fig. 2 162KB Image download
Fig. 1 363KB Image download
41512_2023_153_Article_IEq73.gif 1KB Image download
Fig. 3 353KB Image download
MediaObjects/12974_2023_2872_MOESM3_ESM.docx 3368KB Other download
Fig. 6 857KB Image download
MediaObjects/13750_2023_310_MOESM6_ESM.xlsx 35KB Other download
Fig. 4 678KB Image download
Fig. 2 73KB Image download
Fig. 5 3502KB Image download
Fig. 2 154KB Image download
Fig. 3 497KB Image download
MediaObjects/12888_2023_5043_MOESM1_ESM.docx 49KB Other download
MediaObjects/12864_2023_9600_MOESM10_ESM.pdf 264KB PDF download
Fig. 6 368KB Image download
MediaObjects/12951_2023_2012_MOESM7_ESM.jpg 1995KB Other download
MediaObjects/40798_2023_616_MOESM1_ESM.docx 5055KB Other download
41512_2023_153_Article_IEq93.gif 1KB Image download
MediaObjects/13063_2023_7442_MOESM1_ESM.docx 29KB Other download
MediaObjects/40249_2023_1127_MOESM1_ESM.docx 2825KB Other download
【 图 表 】

41512_2023_153_Article_IEq93.gif

Fig. 6

Fig. 3

Fig. 2

Fig. 5

Fig. 2

Fig. 4

Fig. 6

Fig. 3

41512_2023_153_Article_IEq73.gif

Fig. 1

Fig. 2

Fig. 1

Fig. 4

Fig. 14

Fig. 4

Fig. 2

41512_2023_153_Article_IEq65.gif

Fig. 3

Fig. 3

Fig. 1

13731_2023_311_Article_IEq7.gif

Fig. 6

Fig. 4

Fig. 1

Fig. 5

Fig. 7.

Fig. 1

Fig. 1

Fig. 1

13750_2023_309_Article_IEq64.gif

Fig. 3

Fig. 6

Fig. 1

Fig. 4

13570_2023_282_Article_IEq21.gif

13570_2023_282_Article_IEq19.gif

13570_2023_282_Article_IEq16.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  文献评价指标  
  下载次数:2次 浏览次数:0次