期刊论文详细信息
BMC Medical Informatics and Decision Making
Anomaly prediction of CT equipment based on IoMT data
Research
Haopeng Zhou1  Zhenlin Li2  Jin Huang3  Haowen Liu3  Yixuan Zhuo3  Kang Li3  Tong Wu3  Qilin Liu3  Changxi Wang4 
[1] College of Electrical Engineering, Sichuan University, 610065, Chengdu, China;Department of Radiology, West China Hospital, Sichuan University, 610041, Chengdu, China;Medical Equipment Innovation Research Center, Biomedical Big Data Center, Med-X Center for Informatics, West China Hospital, Sichuan University, 610041, Chengdu, China;Medical Equipment Innovation Research Center, Biomedical Big Data Center, Med-X Center for Informatics, West China Hospital, Sichuan University, 610041, Chengdu, China;Sichuan University - Pittsburgh Institute, Sichuan University, 610207, Chengdu, China;
关键词: Anomaly prediction;    CT equipment;    Internet of Medical Things;    Multivariate time series Classification;    Maintenance strategy;   
DOI  :  10.1186/s12911-023-02267-4
 received in 2022-08-10, accepted in 2023-08-17,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundLarge-scale medical equipment, which is extensively implemented in medical services, is of vital importance for diagnosis but vulnerable to various anomalies and failures. Most hospitals that conduct regular maintenance have been suffering from medical equipment-related incidents for years. Currently, the Internet of Medical Things (IoMT) has emerged as a crucial tool in monitoring the real-time status of the medical equipment. In this paper, we develop an IoMT system of Computed Tomography (CT) equipment in the West China Hospital, Sichuan University and collected the system status time-series data. Novel multivariate time-series classification models and frameworks are proposed to predict the anomalies of CT equipment. The important features that are closely related to the equipment anomalies are identified with the model.MethodsWe extracted the real-time CT equipment status time-series data of 11 equipment between May 19, 2020 and May 19, 2021 from the IoMT, which includes the equipment oil temperature, anode voltage, etc. The arcs are identified as labels of anomalies due to their relationship with decreased imaging quality and CT equipment failures. To improve prediction accuracy, the statistics and transformations of the raw historical time-series data segment in the sliding time window are used to construct new features. Due to the particularity of time-series data, two frameworks are proposed for splitting the training and test sets. Then the Decision Tree, Support Vector Machine, Logistic Regression, Naive Bayesian, and K-Nearest Neighbor classification models are used to classify the system status. We also compare our model to state-of-the-art models.ResultsThe results show that the anomaly prediction accuracy and recall of our method are 79% and 77%, respectively. The oil temperature and anode voltage are identified as the decisive features that may lead to anomalies. The proposed model outperforms the others when predicting the anomalies of the CT equipment based on our dataset.ConclusionsThe proposed method could predict the state of CT equipment and be used as a reference for practical maintenance, where unexpected anomalies of medical equipment could be reduced. It also brings new insights into how to handle non-uniform and imbalanced time series data in practical cases.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202309156130492ZK.pdf 3169KB PDF download
Fig. 1 363KB Image download
Fig. 6 368KB Image download
41512_2023_153_Article_IEq93.gif 1KB Image download
Fig. 3 45KB Image download
Fig. 1 490KB Image download
Fig. 3 986KB Image download
Fig. 3 1320KB Image download
Fig. 6 1058KB Image download
Fig. 4 238KB Image download
Fig. 4 454KB Image download
Fig. 5 192KB Image download
Fig. 2 66KB Image download
40798_2023_622_Article_IEq19.gif 1KB Image download
40798_2023_622_Article_IEq20.gif 1KB Image download
40798_2023_622_Article_IEq21.gif 1KB Image download
Fig. 2 204KB Image download
MediaObjects/12888_2023_4958_MOESM1_ESM.docx 170KB Other download
Fig. 4 175KB Image download
40517_2023_263_Article_IEq2.gif 1KB Image download
Fig. 2 2478KB Image download
Fig. 5 323KB Image download
Fig. 1 146KB Image download
Fig. 2 590KB Image download
Fig. 6 2944KB Image download
Fig. 6 77KB Image download
Fig. 3 1223KB Image download
Fig. 3 100KB Image download
Fig. 1 729KB Image download
Fig. 4 1029KB Image download
Fig. 1 401KB Image download
Fig. 1 534KB Image download
Fig. 4 552KB Image download
Fig. 2 72KB Image download
Fig. 3 69KB Image download
Fig. 2 24KB Image download
MediaObjects/13750_2020_188_MOESM4_ESM.docx 31KB Other download
42490_2023_74_Article_IEq1.gif 1KB Image download
42490_2023_74_Article_IEq13.gif 1KB Image download
MediaObjects/12951_2023_2043_MOESM1_ESM.docx 42KB Other download
MediaObjects/12951_2023_2043_MOESM2_ESM.docx 12KB Other download
MediaObjects/12951_2023_2043_MOESM3_ESM.docx 1253KB Other download
42490_2023_74_Article_IEq17.gif 1KB Image download
42490_2023_74_Article_IEq18.gif 1KB Image download
42490_2023_74_Article_IEq19.gif 1KB Image download
42490_2023_74_Article_IEq20.gif 1KB Image download
Fig. 8 1446KB Image download
Fig. 1 396KB Image download
MediaObjects/12888_2023_5022_MOESM2_ESM.docx 106KB Other download
42490_2023_74_Article_IEq23.gif 1KB Image download
42490_2023_74_Article_IEq24.gif 1KB Image download
42490_2023_74_Article_IEq25.gif 1KB Image download
MediaObjects/12937_2023_864_MOESM5_ESM.docx 21KB Other download
MediaObjects/41408_2023_883_MOESM1_ESM.pdf 136KB PDF download
42490_2023_74_Article_IEq27.gif 1KB Image download
Fig. 3 1550KB Image download
42490_2023_74_Article_IEq29.gif 1KB Image download
42490_2023_74_Article_IEq30.gif 1KB Image download
Fig. 1 134KB Image download
Fig. 1 466KB Image download
Fig. 9 1705KB Image download
Fig. 3 1860KB Image download
42490_2023_74_Article_IEq35.gif 1KB Image download
42490_2023_74_Article_IEq36.gif 1KB Image download
42490_2023_74_Article_IEq37.gif 1KB Image download
Fig. 3 4318KB Image download
42490_2023_74_Article_IEq38.gif 1KB Image download
42490_2023_74_Article_IEq39.gif 1KB Image download
42490_2023_74_Article_IEq40.gif 1KB Image download
Fig. 4 1440KB Image download
42490_2023_74_Article_IEq42.gif 1KB Image download
Fig. 2 349KB Image download
Fig. 1 87KB Image download
Fig. 1 7857KB Image download
MediaObjects/40249_2023_1129_MOESM1_ESM.docx 40KB Other download
Fig. 3 377KB Image download
Fig. 2 1328KB Image download
Fig. 1 347KB Image download
Fig. 4 3903KB Image download
Fig. 4 376KB Image download
Fig. 6 423KB Image download
42490_2023_74_Article_IEq50.gif 1KB Image download
Fig. 1 162KB Image download
Fig. 1 55KB Image download
Fig. 1 449KB Image download
MediaObjects/13046_2023_2749_MOESM7_ESM.pdf 613KB PDF download
Fig. 1 1016KB Image download
13690_2023_1172_Article_IEq1.gif 1KB Image download
13690_2023_1172_Article_IEq2.gif 1KB Image download
Fig. 3 1052KB Image download
Fig. 1 342KB Image download
13690_2023_1172_Article_IEq5.gif 1KB Image download
13690_2023_1172_Article_IEq6.gif 1KB Image download
13690_2023_1172_Article_IEq7.gif 1KB Image download
13690_2023_1172_Article_IEq8.gif 1KB Image download
42490_2023_74_Article_IEq59.gif 1KB Image download
Fig. 2 280KB Image download
13068_2023_2361_Article_IEq1.gif 1KB Image download
Fig. 3 390KB Image download
【 图 表 】

Fig. 3

13068_2023_2361_Article_IEq1.gif

Fig. 2

42490_2023_74_Article_IEq59.gif

13690_2023_1172_Article_IEq8.gif

13690_2023_1172_Article_IEq7.gif

13690_2023_1172_Article_IEq6.gif

13690_2023_1172_Article_IEq5.gif

Fig. 1

Fig. 3

13690_2023_1172_Article_IEq2.gif

13690_2023_1172_Article_IEq1.gif

Fig. 1

Fig. 1

Fig. 1

Fig. 1

42490_2023_74_Article_IEq50.gif

Fig. 6

Fig. 4

Fig. 4

Fig. 1

Fig. 2

Fig. 3

Fig. 1

Fig. 1

Fig. 2

42490_2023_74_Article_IEq42.gif

Fig. 4

42490_2023_74_Article_IEq40.gif

42490_2023_74_Article_IEq39.gif

42490_2023_74_Article_IEq38.gif

Fig. 3

42490_2023_74_Article_IEq37.gif

42490_2023_74_Article_IEq36.gif

42490_2023_74_Article_IEq35.gif

Fig. 3

Fig. 9

Fig. 1

Fig. 1

42490_2023_74_Article_IEq30.gif

42490_2023_74_Article_IEq29.gif

Fig. 3

42490_2023_74_Article_IEq27.gif

42490_2023_74_Article_IEq25.gif

42490_2023_74_Article_IEq24.gif

42490_2023_74_Article_IEq23.gif

Fig. 1

Fig. 8

42490_2023_74_Article_IEq20.gif

42490_2023_74_Article_IEq19.gif

42490_2023_74_Article_IEq18.gif

42490_2023_74_Article_IEq17.gif

42490_2023_74_Article_IEq13.gif

42490_2023_74_Article_IEq1.gif

Fig. 2

Fig. 3

Fig. 2

Fig. 4

Fig. 1

Fig. 1

Fig. 4

Fig. 1

Fig. 3

Fig. 3

Fig. 6

Fig. 6

Fig. 2

Fig. 1

Fig. 5

Fig. 2

40517_2023_263_Article_IEq2.gif

Fig. 4

Fig. 2

40798_2023_622_Article_IEq21.gif

40798_2023_622_Article_IEq20.gif

40798_2023_622_Article_IEq19.gif

Fig. 2

Fig. 5

Fig. 4

Fig. 4

Fig. 6

Fig. 3

Fig. 3

Fig. 1

Fig. 3

41512_2023_153_Article_IEq93.gif

Fig. 6

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  文献评价指标  
  下载次数:2次 浏览次数:0次