期刊论文详细信息
EURASIP Journal on Wireless Communications and Networking
Hybrid extreme learning machine-based approach for IDS in smart Ad Hoc networks
Research
Bijian Liu1 
[1] Fujian Vocational College of Agriculture, Fuzhou, Fujian, China;
关键词: Extreme learning machine;    Intrusion detection system;    Detection accuracy;    Detection time;    Multi-node ad hoc network;    And RMSE;   
DOI  :  10.1186/s13638-023-02297-6
 received in 2023-06-23, accepted in 2023-08-22,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

In recent years, intrusion detection systems (IDSs) have increasingly come to be regarded as a significant method due to their potential to develop into a key component that is necessary for the safety of computer networks. This work focuses on the usage of extreme learning machines, which are also known as ELMs, with the purpose of spotting prospective intrusions and assaults. The proposed method combines the self-adaptive differential evolution method for optimising network input weights and hidden node biases and multi-node probabilistic approach with the extreme learning machine for deriving network output weights. This body of work presents an innovative method of learning that can be put into practice in order to determine whether or not an incursion has taken place in the system that is the focus of the investigation that is being carried out by this body of work. A hybrid extreme learning machine is used in the execution of this strategy. When there is one thousand times more traffic on a network, the ability of regular IDS systems to detect malicious network intrusions is lowered by a factor of one hundred. This is because there are less opportunities to detect the intrusions. This is due to the fact that there are less probabilities to identify potential dangers. This paper lays the groundwork for a novel methodology for identifying malicious network breaches. The findings of the simulation demonstrated that putting into practice the approach that was proposed resulted in an improvement in the accuracy of the scenario's classification while it was being investigated. The implementation of the method seems to have produced the desired results.

【 授权许可】

CC BY   
© Springer Nature Switzerland AG 2023

【 预 览 】
附件列表
Files Size Format View
RO202309155469951ZK.pdf 2163KB PDF download
Fig. 3 404KB Image download
Fig. 3 118KB Image download
Fig. 1 1164KB Image download
Fig. 3 272KB Image download
Fig. 2 868KB Image download
13690_2023_1147_Article_IEq10.gif 1KB Image download
Fig. 1 175KB Image download
Fig. 1 718KB Image download
13690_2023_1147_Article_IEq14.gif 1KB Image download
Fig. 3 57KB Image download
13690_2023_1147_Article_IEq16.gif 1KB Image download
MediaObjects/12888_2023_5071_MOESM1_ESM.docx 33KB Other download
13690_2023_1147_Article_IEq18.gif 1KB Image download
13690_2023_1147_Article_IEq19.gif 1KB Image download
13690_2023_1147_Article_IEq20.gif 1KB Image download
MediaObjects/13690_2023_1147_MOESM1_ESM.xlsx 17KB Other download
Fig. 4 544KB Image download
MediaObjects/13690_2023_1145_MOESM1_ESM.pdf 113KB PDF download
Fig. 1 100KB Image download
Fig. 2 216KB Image download
MediaObjects/12888_2023_5026_MOESM1_ESM.docx 25KB Other download
Fig. 1 2029KB Image download
Fig. 6 4041KB Image download
Fig. 4 263KB Image download
Fig. 3 335KB Image download
12862_2023_2133_Article_IEq130.gif 1KB Image download
Fig. 5 217KB Image download
Fig. 1 257KB Image download
Fig. 5 1155KB Image download
Fig. 4 695KB Image download
Fig. 1 47KB Image download
MediaObjects/13750_2020_190_MOESM2_ESM.xlsx 175KB Other download
Fig. 2 516KB Image download
Fig. 3 315KB Image download
MediaObjects/12902_2023_1416_MOESM4_ESM.tif 451KB Other download
Fig. 8 513KB Image download
Fig. 2 1468KB Image download
Fig. 5 745KB Image download
Fig. 3 933KB Image download
Fig. 2 255KB Image download
Fig. 5 163KB Image download
Fig. 6 2060KB Image download
Fig. 6 227KB Image download
Fig. 7 48KB Image download
MediaObjects/12902_2023_1416_MOESM7_ESM.jpg 1054KB Other download
Fig. 4 153KB Image download
Fig. 6 447KB Image download
Fig. 2 57KB Image download
MediaObjects/41408_2023_892_MOESM12_ESM.xlsx 22KB Other download
Fig. 1 650KB Image download
Fig. 1 92KB Image download
Fig. 2 68KB Image download
MediaObjects/13750_2020_190_MOESM6_ESM.xlsx 34KB Other download
Fig. 3 321KB Image download
Fig. 4 42KB Image download
Fig. 3 162KB Image download
Fig. 4 1411KB Image download
MediaObjects/12888_2023_5047_MOESM1_ESM.docx 26KB Other download
Fig. 2 151KB Image download
MediaObjects/12888_2023_5047_MOESM2_ESM.docx 19KB Other download
Fig. 7 259KB Image download
MediaObjects/12974_2023_2873_MOESM3_ESM.tif 1195KB Other download
Fig. 3 166KB Image download
Fig. 2 72KB Image download
MediaObjects/12888_2023_5047_MOESM3_ESM.docx 27KB Other download
12888_2023_5124_Article_IEq1.gif 1KB Image download
12888_2023_5124_Article_IEq2.gif 1KB Image download
MediaObjects/12888_2023_5047_MOESM6_ESM.docx 19KB Other download
MediaObjects/12888_2023_5047_MOESM7_ESM.docx 19KB Other download
MediaObjects/12888_2023_5047_MOESM8_ESM.docx 19KB Other download
Fig. 4 1975KB Image download
Fig. 6 474KB Image download
MediaObjects/12902_2023_1398_MOESM2_ESM.xlsx 36KB Other download
Fig. 1 160KB Image download
Fig. 1 322KB Image download
MediaObjects/12888_2023_4955_MOESM1_ESM.docx 12KB Other download
【 图 表 】

Fig. 1

Fig. 1

Fig. 6

Fig. 4

12888_2023_5124_Article_IEq2.gif

12888_2023_5124_Article_IEq1.gif

Fig. 2

Fig. 3

Fig. 7

Fig. 2

Fig. 4

Fig. 3

Fig. 4

Fig. 3

Fig. 2

Fig. 1

Fig. 1

Fig. 2

Fig. 6

Fig. 4

Fig. 7

Fig. 6

Fig. 6

Fig. 5

Fig. 2

Fig. 3

Fig. 5

Fig. 2

Fig. 8

Fig. 3

Fig. 2

Fig. 1

Fig. 4

Fig. 5

Fig. 1

Fig. 5

12862_2023_2133_Article_IEq130.gif

Fig. 3

Fig. 4

Fig. 6

Fig. 1

Fig. 2

Fig. 1

Fig. 4

13690_2023_1147_Article_IEq20.gif

13690_2023_1147_Article_IEq19.gif

13690_2023_1147_Article_IEq18.gif

13690_2023_1147_Article_IEq16.gif

Fig. 3

13690_2023_1147_Article_IEq14.gif

Fig. 1

Fig. 1

13690_2023_1147_Article_IEq10.gif

Fig. 2

Fig. 3

Fig. 1

Fig. 3

Fig. 3

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  文献评价指标  
  下载次数:8次 浏览次数:4次