期刊论文详细信息
BMC Bioinformatics
GCNCPR-ACPs: a novel graph convolution network method for ACPs prediction
Research
Xiujin Wu1  Wenhua Zeng1  Fan Lin2 
[1] School of Informatics, Xiamen University, Xiamen, Fujian, China;School of Informatics, Xiamen University, Xiamen, Fujian, China;Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, USA;
关键词: Anticancer peptide;    Graph convolution network;    Graph collapse;    Graph representation learning;    Classification;   
DOI  :  10.1186/s12859-022-04771-2
 received in 2022-05-27, accepted in 2022-05-31,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

BackgroundAnticancer peptide (ACP) inhibits and kills tumor cells. Research on ACP is of great significance for the development of new drugs, and the prediction of ACPs and non-ACPs is the new hotspot.ResultsWe propose a new machine learning-based method named GCNCPR-ACPs (a Graph Convolutional Neural Network Method based on collapse pooling and residual network to predict the ACPs), which automatically and accurately predicts ACPs using residual graph convolution networks, differentiable graph pooling, and features extracted using peptide sequence information extraction. The GCNCPR-ACPs method can effectively capture different levels of node attributes for amino acid node representation learning, GCNCPR-ACPs uses node2vec and one-hot embedding methods to extract initial amino acid features for ACP prediction.ConclusionsExperimental results of ten-fold cross-validation and independent validation based on different metrics showed that GCNCPR-ACPs significantly outperformed state-of-the-art methods. Specifically, the evaluation indicators of Matthews Correlation Coefficient (MCC) and AUC of our predicator were 69.5% and 90%, respectively, which were 4.3% and 2% higher than those of the other predictors, respectively, in ten-fold cross-validation. And in the independent test, the scores of MCC and SP were 69.6% and 93.9%, respectively, which were 37.6% and 5.5% higher than those of the other predictors, respectively. The overall results showed that the GCNCPR-ACPs method proposed in the current paper can effectively predict ACPs.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202309154535784ZK.pdf 1356KB PDF download
MediaObjects/12888_2023_5081_MOESM5_ESM.xls 591KB Other download
Fig. 1 977KB Image download
Fig. 4 523KB Image download
MediaObjects/13068_2023_2372_MOESM1_ESM.pdf 1139KB PDF download
MediaObjects/40798_2023_610_MOESM1_ESM.docx 44KB Other download
Fig. 6 1034KB Image download
Fig. 1 86KB Image download
Fig. 2 482KB Image download
Fig. 2 478KB Image download
MediaObjects/12888_2023_5000_MOESM1_ESM.docx 20KB Other download
MediaObjects/12888_2023_5081_MOESM7_ESM.pdf 96KB PDF download
Fig. 3 116KB Image download
Fig. 3 3423KB Image download
Fig. 2 49KB Image download
MediaObjects/13041_2023_1048_MOESM1_ESM.pdf 3081KB PDF download
Fig. 3 68KB Image download
Fig. 5 247KB Image download
Fig. 4 147KB Image download
MediaObjects/42358_2023_307_MOESM1_ESM.docx 11KB Other download
Fig. 6 2689KB Image download
Fig. 5 69KB Image download
41522_2023_426_Article_IEq8.gif 1KB Image download
MediaObjects/12974_2023_2873_MOESM1_ESM.tif 1481KB Other download
12862_2023_2133_Article_IEq56.gif 1KB Image download
Fig. 2 813KB Image download
Fig. 2 198KB Image download
Fig. 1 80KB Image download
MediaObjects/12951_2023_1994_MOESM2_ESM.pdf 555KB PDF download
Fig. 3 284KB Image download
Fig. 5 37KB Image download
Fig. 2 101KB Image download
12862_2023_2133_Article_IEq61.gif 1KB Image download
Fig. 1 800KB Image download
292KB Image download
Fig. 1 412KB Image download
Fig. 1 1128KB Image download
【 图 表 】

Fig. 1

Fig. 1

Fig. 1

12862_2023_2133_Article_IEq61.gif

Fig. 2

Fig. 5

Fig. 3

Fig. 1

Fig. 2

Fig. 2

12862_2023_2133_Article_IEq56.gif

41522_2023_426_Article_IEq8.gif

Fig. 5

Fig. 6

Fig. 4

Fig. 5

Fig. 3

Fig. 2

Fig. 3

Fig. 3

Fig. 2

Fig. 2

Fig. 1

Fig. 6

Fig. 4

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  文献评价指标  
  下载次数:12次 浏览次数:1次