期刊论文详细信息
BMC Bioinformatics
GCNCPR-ACPs: a novel graph convolution network method for ACPs prediction
Research
Xiujin Wu1  Wenhua Zeng1  Fan Lin2 
[1] School of Informatics, Xiamen University, Xiamen, Fujian, China;School of Informatics, Xiamen University, Xiamen, Fujian, China;Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, USA;
关键词: Anticancer peptide;    Graph convolution network;    Graph collapse;    Graph representation learning;    Classification;   
DOI  :  10.1186/s12859-022-04771-2
 received in 2022-05-27, accepted in 2022-05-31,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

BackgroundAnticancer peptide (ACP) inhibits and kills tumor cells. Research on ACP is of great significance for the development of new drugs, and the prediction of ACPs and non-ACPs is the new hotspot.ResultsWe propose a new machine learning-based method named GCNCPR-ACPs (a Graph Convolutional Neural Network Method based on collapse pooling and residual network to predict the ACPs), which automatically and accurately predicts ACPs using residual graph convolution networks, differentiable graph pooling, and features extracted using peptide sequence information extraction. The GCNCPR-ACPs method can effectively capture different levels of node attributes for amino acid node representation learning, GCNCPR-ACPs uses node2vec and one-hot embedding methods to extract initial amino acid features for ACP prediction.ConclusionsExperimental results of ten-fold cross-validation and independent validation based on different metrics showed that GCNCPR-ACPs significantly outperformed state-of-the-art methods. Specifically, the evaluation indicators of Matthews Correlation Coefficient (MCC) and AUC of our predicator were 69.5% and 90%, respectively, which were 4.3% and 2% higher than those of the other predictors, respectively, in ten-fold cross-validation. And in the independent test, the scores of MCC and SP were 69.6% and 93.9%, respectively, which were 37.6% and 5.5% higher than those of the other predictors, respectively. The overall results showed that the GCNCPR-ACPs method proposed in the current paper can effectively predict ACPs.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305068227671ZK.pdf 1357KB PDF download
12982_2022_119_Article_IEq233.gif 1KB Image download
12888_2022_4365_Article_IEq16.gif 1KB Image download
12888_2022_4365_Article_IEq21.gif 1KB Image download
12888_2022_4365_Article_IEq23.gif 1KB Image download
12888_2022_4365_Article_IEq27.gif 1KB Image download
12888_2022_4365_Article_IEq28.gif 1KB Image download
12888_2022_4365_Article_IEq29.gif 1KB Image download
12888_2022_4365_Article_IEq30.gif 1KB Image download
12888_2022_4365_Article_IEq31.gif 1KB Image download
12888_2022_4365_Article_IEq32.gif 1KB Image download
12888_2022_4365_Article_IEq33.gif 1KB Image download
12888_2022_4365_Article_IEq34.gif 1KB Image download
12888_2022_4365_Article_IEq35.gif 1KB Image download
12888_2022_4365_Article_IEq36.gif 1KB Image download
12888_2022_4365_Article_IEq37.gif 1KB Image download
12888_2022_4365_Article_IEq38.gif 1KB Image download
12888_2022_4365_Article_IEq39.gif 1KB Image download
12888_2022_4365_Article_IEq40.gif 1KB Image download
12888_2022_4365_Article_IEq41.gif 1KB Image download
12888_2022_4365_Article_IEq42.gif 1KB Image download
Fig. 1 2150KB Image download
12888_2022_4365_Article_IEq44.gif 1KB Image download
12982_2022_119_Article_IEq132.gif 1KB Image download
12982_2022_119_Article_IEq133.gif 1KB Image download
MediaObjects/12888_2022_4486_MOESM1_ESM.docx 24KB Other download
12982_2022_119_Article_IEq135.gif 1KB Image download
12982_2022_119_Article_IEq136.gif 1KB Image download
12982_2022_119_Article_IEq137.gif 1KB Image download
12982_2022_119_Article_IEq138.gif 1KB Image download
12982_2022_119_Article_IEq139.gif 1KB Image download
12888_2022_4365_Article_IEq45.gif 1KB Image download
12888_2022_4365_Article_IEq46.gif 1KB Image download
12888_2022_4365_Article_IEq47.gif 1KB Image download
12888_2022_4365_Article_IEq48.gif 1KB Image download
12888_2022_4365_Article_IEq49.gif 1KB Image download
12888_2022_4365_Article_IEq50.gif 1KB Image download
【 图 表 】

12888_2022_4365_Article_IEq50.gif

12888_2022_4365_Article_IEq49.gif

12888_2022_4365_Article_IEq48.gif

12888_2022_4365_Article_IEq47.gif

12888_2022_4365_Article_IEq46.gif

12888_2022_4365_Article_IEq45.gif

12982_2022_119_Article_IEq139.gif

12982_2022_119_Article_IEq138.gif

12982_2022_119_Article_IEq137.gif

12982_2022_119_Article_IEq136.gif

12982_2022_119_Article_IEq135.gif

12982_2022_119_Article_IEq133.gif

12982_2022_119_Article_IEq132.gif

12888_2022_4365_Article_IEq44.gif

Fig. 1

12888_2022_4365_Article_IEq42.gif

12888_2022_4365_Article_IEq41.gif

12888_2022_4365_Article_IEq40.gif

12888_2022_4365_Article_IEq39.gif

12888_2022_4365_Article_IEq38.gif

12888_2022_4365_Article_IEq37.gif

12888_2022_4365_Article_IEq36.gif

12888_2022_4365_Article_IEq35.gif

12888_2022_4365_Article_IEq34.gif

12888_2022_4365_Article_IEq33.gif

12888_2022_4365_Article_IEq32.gif

12888_2022_4365_Article_IEq31.gif

12888_2022_4365_Article_IEq30.gif

12888_2022_4365_Article_IEq29.gif

12888_2022_4365_Article_IEq28.gif

12888_2022_4365_Article_IEq27.gif

12888_2022_4365_Article_IEq23.gif

12888_2022_4365_Article_IEq21.gif

12888_2022_4365_Article_IEq16.gif

12982_2022_119_Article_IEq233.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  文献评价指标  
  下载次数:7次 浏览次数:4次