期刊论文详细信息
Diagnostic Pathology
The value of deep neural networks in the pathological classification of thyroid tumors
Research
Chengwen Deng1  Dan Li2  Qingqing Huang3  Dongyan Han4  Ming Feng5 
[1] Department of Nuclear Medicine, Chaohu Hospital of Anhui Medical University, 238000, Heifei, China;Department of Nuclear Medicine, Sun Yat‐sen Memorial Hospital, Sun Yat‐sen University, 510289, Guangzhou, China;Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, 201318, Shanghai, China;Shanghai Tenth People’s Hospital Tongji University, 200072, Shanghai, China;Tongji University, 200082, Shanghai, China;
关键词: Deep neural network;    Thyroid tumor;    Pathology;    Diagnostics;    Artificial intelligence;   
DOI  :  10.1186/s13000-023-01380-2
 received in 2023-06-21, accepted in 2023-08-08,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundTo explore the distinguishing diagnostic value and clinical application potential of deep neural networks (DNN) for pathological images of thyroid tumors.MethodsA total of 799 pathological thyroid images of 559 patients with thyroid tumors were retrospectively analyzed. The pathological types included papillary thyroid carcinoma (PTC), medullary thyroid carcinoma (MTC), follicular thyroid carcinoma (FTC), adenomatous goiter, adenoma, and normal thyroid gland. The dataset was divided into a training set and a test set. Resnet50, Resnext50, EfficientNet, and Densenet121 were trained using the training set data and tested with the test set data to determine the diagnostic efficiency of different pathology types and to further analyze the causes of misdiagnosis.ResultsThe recall, precision, negative predictive value (NPV), accuracy, specificity, and F1 scores of the four models ranged from 33.33% to 100.00%. The area under curve (AUC) ranged from 0.822 to 0.994, and the Kappa coefficient ranged from 0.7508 to 0.7713. However, the performance of diagnosing FTC, adenoma, and adenomatous goiter was slightly inferior to other types of pathological tissues.ConclusionThe DNN model achieved satisfactory results in the task of classifying thyroid tumors by learning thyroid pathology images. These results indicate the potential of the DNN model for the efficient diagnosis of thyroid tumor histopathology.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202309152966570ZK.pdf 1894KB PDF download
42490_2023_74_Article_IEq62.gif 1KB Image download
13690_2023_1154_Article_IEq16.gif 1KB Image download
Fig. 1 279KB Image download
MediaObjects/12888_2023_5086_MOESM1_ESM.docx 19KB Other download
40517_2023_261_Article_IEq34.gif 1KB Image download
40517_2023_261_Article_IEq36.gif 1KB Image download
Fig. 1 105KB Image download
Fig. 2 63KB Image download
40517_2023_261_Article_IEq45.gif 1KB Image download
Fig. 1 1005KB Image download
MediaObjects/12974_2023_2861_MOESM2_ESM.tif 30484KB Other download
Fig. 4 226KB Image download
MediaObjects/12888_2023_5086_MOESM3_ESM.docx 575KB Other download
MediaObjects/42004_2023_986_MOESM6_ESM.docx 12133KB Other download
12888_2023_5113_Article_IEq2.gif 1KB Image download
12888_2023_5113_Article_IEq3.gif 1KB Image download
12888_2023_5113_Article_IEq4.gif 1KB Image download
12888_2023_5113_Article_IEq5.gif 1KB Image download
【 图 表 】

12888_2023_5113_Article_IEq5.gif

12888_2023_5113_Article_IEq4.gif

12888_2023_5113_Article_IEq3.gif

12888_2023_5113_Article_IEq2.gif

Fig. 4

Fig. 1

40517_2023_261_Article_IEq45.gif

Fig. 2

Fig. 1

40517_2023_261_Article_IEq36.gif

40517_2023_261_Article_IEq34.gif

Fig. 1

13690_2023_1154_Article_IEq16.gif

42490_2023_74_Article_IEq62.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  文献评价指标  
  下载次数:7次 浏览次数:0次