期刊论文详细信息
Chinese Journal of Mechanical Engineering
Nanometric Cutting Mechanism of Cerium–Lanthanum Alloy
Original Article
Min Lai1  Chenyu Zhao1  Fengzhou Fang2 
[1]State Key Laboratory of Precision Measuring Technology & Instruments, Laboratory of Micro/Nano Manufacturing Technology (MNMT), Tianjin University, 300072, Tianjin, China
[2]State Key Laboratory of Precision Measuring Technology & Instruments, Laboratory of Micro/Nano Manufacturing Technology (MNMT), Tianjin University, 300072, Tianjin, China
[3]Centre of Micro/Nano Manufacturing Technology (MNMT-Dublin), University College Dublin, Dublin 4, Ireland
关键词: Cerium–lanthanum alloy;    Molecular dynamics simulation;    Nanometric cutting;    Subsurface damage;   
DOI  :  10.1186/s10033-023-00927-0
 received in 2022-03-24, accepted in 2023-07-27,  发布年份 2023
来源: Springer
PDF
【 摘 要 】
Cerium–lanthanum alloy is widely used in the green energy industry, and the nanoscale smooth surface of this material is in demand. Nanometric cutting is an effective approach to achieving the ultra-precision machining surface. Molecular dynamics (MD) simulation is usually used to reveal the atomic-scale details of the material removal mechanism in nanometric cutting. In this study, the effects of cutting speed and undeformed chip thickness (UCT) on cutting force and subsurface deformation of the cerium–lanthanum alloy during nanometric cutting are analyzed through MD simulation. The results illustrate that the dislocations, stacking faults, and phase transitions occur in the subsurface during cutting. The dislocations are mainly Shockley partial dislocation, and the increase of temperature and pressure during the cutting process leads to the phase transformation of γ-Ce (FCC) into β-Ce (HCP) and δ-Ce (BCC). β-Ce is mainly distributed in the stacking fault area, while δ-Ce is distributed in the boundary area between the dislocation atoms and γ-Ce atoms. The cutting speed and UCT affect the distribution of subsurface damage. A thicker deformed layer including dislocations, stacking faults and phase-transformation atoms on the machined surface is generated with the increase in the cutting speed and UCT. Simultaneously, the cutting speed and UCT significantly affect the cutting force, material removal rate, and generated subsurface state. The fluctuations in the cutting force are related to the generation and disappearance of dislocations. This research first studied the nanometric cutting mechanism of the cerium–lanthanum ally, providing a theoretical basis for the development of ultra-precision machining techniques of these materials.
【 授权许可】

CC BY   
© Chinese Mechanical Engineering Society 2023

【 预 览 】
附件列表
Files Size Format View
RO202309151590898ZK.pdf 3491KB PDF download
MediaObjects/12888_2023_5109_MOESM2_ESM.docx 12KB Other download
Fig. 1 167KB Image download
40517_2023_266_Article_IEq29.gif 1KB Image download
40517_2023_266_Article_IEq32.gif 1KB Image download
MediaObjects/12888_2023_5015_MOESM1_ESM.xlsx 119KB Other download
Fig. 2 246KB Image download
13690_2023_1151_Article_IEq14.gif 1KB Image download
13750_2023_309_Article_IEq64.gif 1KB Image download
Fig. 1 983KB Image download
Fig. 1 363KB Image download
41512_2023_153_Article_IEq73.gif 1KB Image download
Fig. 3 353KB Image download
MediaObjects/12974_2023_2872_MOESM3_ESM.docx 3368KB Other download
MediaObjects/12888_2023_5043_MOESM1_ESM.docx 49KB Other download
MediaObjects/12864_2023_9600_MOESM10_ESM.pdf 264KB PDF download
MediaObjects/40249_2023_1127_MOESM1_ESM.docx 2825KB Other download
Fig. 2 223KB Image download
MediaObjects/12974_2023_2871_MOESM1_ESM.tif 19056KB Other download
Fig. 5 1411KB Image download
MediaObjects/42004_2023_961_MOESM4_ESM.pdf 104KB PDF download
Fig. 1 506KB Image download
Fig. 10 271KB Image download
Fig. 1 227KB Image download
Fig. 3 1257KB Image download
Fig. 11 181KB Image download
Fig. 3 436KB Image download
40798_2023_622_Article_IEq15.gif 1KB Image download
Fig. 5 319KB Image download
Fig. 1 99KB Image download
40517_2023_263_Article_IEq2.gif 1KB Image download
Fig. 2 2478KB Image download
Fig. 5 323KB Image download
Fig. 4 1403KB Image download
Fig. 5 1918KB Image download
MediaObjects/12888_2023_5022_MOESM1_ESM.docx 2392KB Other download
Fig. 2 349KB Image download
Fig. 1 7857KB Image download
MediaObjects/40249_2023_1129_MOESM1_ESM.docx 40KB Other download
Fig. 3 377KB Image download
Fig. 2 1328KB Image download
Fig. 4 3903KB Image download
Fig. 6 423KB Image download
Fig. 1 162KB Image download
Fig. 1 55KB Image download
42490_2023_74_Article_IEq59.gif 1KB Image download
Fig. 2 280KB Image download
13068_2023_2361_Article_IEq1.gif 1KB Image download
Fig. 3 390KB Image download
Fig. 1 345KB Image download
42490_2023_74_Article_IEq62.gif 1KB Image download
Fig. 4 329KB Image download
Fig. 1 411KB Image download
MediaObjects/13046_2023_2788_MOESM2_ESM.doc 30KB Other download
Fig. 4 566KB Image download
【 图 表 】

Fig. 4

Fig. 1

Fig. 4

42490_2023_74_Article_IEq62.gif

Fig. 1

Fig. 3

13068_2023_2361_Article_IEq1.gif

Fig. 2

42490_2023_74_Article_IEq59.gif

Fig. 1

Fig. 1

Fig. 6

Fig. 4

Fig. 2

Fig. 3

Fig. 1

Fig. 2

Fig. 5

Fig. 4

Fig. 5

Fig. 2

40517_2023_263_Article_IEq2.gif

Fig. 1

Fig. 5

40798_2023_622_Article_IEq15.gif

Fig. 3

Fig. 11

Fig. 3

Fig. 1

Fig. 10

Fig. 1

Fig. 5

Fig. 2

Fig. 3

41512_2023_153_Article_IEq73.gif

Fig. 1

Fig. 1

13750_2023_309_Article_IEq64.gif

13690_2023_1151_Article_IEq14.gif

Fig. 2

40517_2023_266_Article_IEq32.gif

40517_2023_266_Article_IEq29.gif

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  文献评价指标  
  下载次数:0次 浏览次数:0次