期刊论文详细信息
BMC Bioinformatics
AMEND: active module identification using experimental data and network diffusion
Research
Chad Slawson1  Jeffrey A. Thompson2  Samuel S. Boyd2 
[1] Department of Biochemistry, University of Kansas Medical Center, 3901 Rainbow Blvd., 66103, Kansas City, KS, USA;University of Kansas Cancer Center, Kansas City, KS, USA;University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, USA;Department of Biostatistics and Data Science, University of Kansas Medical Center, 3901 Rainbow Blvd., 66103, Kansas City, KS, USA;University of Kansas Cancer Center, Kansas City, KS, USA;
关键词: Network analysis;    Module identification;    Omics;   
DOI  :  10.1186/s12859-023-05376-z
 received in 2023-01-18, accepted in 2023-06-02,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundMolecular interaction networks have become an important tool in providing context to the results of various omics experiments. For example, by integrating transcriptomic data and protein–protein interaction (PPI) networks, one can better understand how the altered expression of several genes are related with one another. The challenge then becomes how to determine, in the context of the interaction network, the subset(s) of genes that best captures the main mechanisms underlying the experimental conditions. Different algorithms have been developed to address this challenge, each with specific biological questions in mind. One emerging area of interest is to determine which genes are equivalently or inversely changed between different experiments. The equivalent change index (ECI) is a recently proposed metric that measures the extent to which a gene is equivalently or inversely regulated between two experiments. The goal of this work is to develop an algorithm that makes use of the ECI and powerful network analysis techniques to identify a connected subset of genes that are highly relevant to the experimental conditions.ResultsTo address the above goal, we developed a method called Active Module identification using Experimental data and Network Diffusion (AMEND). The AMEND algorithm is designed to find a subset of connected genes in a PPI network that have large experimental values. It makes use of random walk with restart to create gene weights, and a heuristic solution to the Maximum-weight Connected Subgraph problem using these weights. This is performed iteratively until an optimal subnetwork (i.e., active module) is found. AMEND was compared to two current methods, NetCore and DOMINO, using two gene expression datasets.ConclusionThe AMEND algorithm is an effective, fast, and easy-to-use method for identifying network-based active modules. It returned connected subnetworks with the largest median ECI by magnitude, capturing distinct but related functional groups of genes. Code is freely available at https://github.com/samboyd0/AMEND.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202309140913713ZK.pdf 1521KB PDF download
Fig. 6 107KB Image download
Fig. 1 299KB Image download
Fig. 2 770KB Image download
Fig. 2 1579KB Image download
Fig. 4 577KB Image download
Fig. 4 331KB Image download
MediaObjects/40798_2023_602_MOESM1_ESM.docx 33KB Other download
Fig. 3 997KB Image download
Fig. 5 148KB Image download
MediaObjects/40798_2023_602_MOESM3_ESM.docx 24KB Other download
Fig. 6 129KB Image download
Fig. 7 495KB Image download
Fig. 1 822KB Image download
Fig. 2 153KB Image download
40854_2023_486_Article_IEq17.gif 1KB Image download
Fig. 3 127KB Image download
Fig. 8 2459KB Image download
40854_2023_486_Article_IEq28.gif 1KB Image download
Fig. 1 154KB Image download
40854_2023_486_Article_IEq30.gif 1KB Image download
Fig. 1 1790KB Image download
40854_2023_486_Article_IEq42.gif 1KB Image download
40854_2023_486_Article_IEq44.gif 1KB Image download
40854_2023_486_Article_IEq45.gif 1KB Image download
Fig. 3 2244KB Image download
131KB Image download
42004_2023_944_Article_IEq5.gif 1KB Image download
Fig. 5 2131KB Image download
Fig. 4 2453KB Image download
MediaObjects/12864_2023_9419_MOESM6_ESM.xlsx 11KB Other download
42004_2023_944_Article_IEq7.gif 1KB Image download
MediaObjects/12864_2023_9419_MOESM8_ESM.xlsx 10KB Other download
Fig. 6 2324KB Image download
Fig.1 1536KB Image download
42004_2023_944_Article_IEq9.gif 1KB Image download
Fig. 4 1860KB Image download
Fig. 1 232KB Image download
Fig. 1 330KB Image download
Fig. 2 2194KB Image download
Fig. 7 1604KB Image download
MediaObjects/13100_2023_296_MOESM6_ESM.zip 75KB Package download
41534_2023_739_Article_IEq82.gif 1KB Image download
Fig. 2 23KB Image download
Fig.3 3233KB Image download
Fig. 1 1438KB Image download
Fig. 3 361KB Image download
Fig. 5 3244KB Image download
Fig. 1 1837KB Image download
12938_2023_1124_Article_IEq9.gif 1KB Image download
Fig. 6 1152KB Image download
Fig. 1 1051KB Image download
12938_2023_1124_Article_IEq13.gif 1KB Image download
12938_2023_1124_Article_IEq11.gif 1KB Image download
Fig. 7 1062KB Image download
42004_2023_934_Article_IEq2.gif 1KB Image download
Fig. 2 489KB Image download
Fig. 2 1233KB Image download
Fig. 7 1667KB Image download
Fig. 3 1319KB Image download
42004_2023_934_Article_IEq6.gif 1KB Image download
806KB Image download
Fig. 7 3423KB Image download
Fig. 8 2217KB Image download
MediaObjects/42004_2023_934_MOESM1_ESM.pdf 1821KB PDF download
MediaObjects/13750_2019_152_MOESM3_ESM.docx 13KB Other download
MediaObjects/41408_2023_870_MOESM4_ESM.pdf 1278KB PDF download
Fig. 3 2178KB Image download
Fig. 2 1383KB Image download
Fig. 6 1034KB Image download
Fig. 4 2108KB Image download
Fig. 5 199KB Image download
Fig. 1 164KB Image download
Fig. 1 694KB Image download
Fig. 3 725KB Image download
Fig. 7 1047KB Image download
【 图 表 】

Fig. 7

Fig. 3

Fig. 1

Fig. 1

Fig. 5

Fig. 4

Fig. 6

Fig. 2

Fig. 3

Fig. 8

Fig. 7

42004_2023_934_Article_IEq6.gif

Fig. 3

Fig. 7

Fig. 2

Fig. 2

42004_2023_934_Article_IEq2.gif

Fig. 7

12938_2023_1124_Article_IEq11.gif

12938_2023_1124_Article_IEq13.gif

Fig. 1

Fig. 6

12938_2023_1124_Article_IEq9.gif

Fig. 1

Fig. 5

Fig. 3

Fig. 1

Fig.3

Fig. 2

41534_2023_739_Article_IEq82.gif

Fig. 7

Fig. 2

Fig. 1

Fig. 1

Fig. 4

42004_2023_944_Article_IEq9.gif

Fig.1

Fig. 6

42004_2023_944_Article_IEq7.gif

Fig. 4

Fig. 5

42004_2023_944_Article_IEq5.gif

Fig. 3

40854_2023_486_Article_IEq45.gif

40854_2023_486_Article_IEq44.gif

40854_2023_486_Article_IEq42.gif

Fig. 1

40854_2023_486_Article_IEq30.gif

Fig. 1

40854_2023_486_Article_IEq28.gif

Fig. 8

Fig. 3

40854_2023_486_Article_IEq17.gif

Fig. 2

Fig. 1

Fig. 7

Fig. 6

Fig. 5

Fig. 3

Fig. 4

Fig. 4

Fig. 2

Fig. 2

Fig. 1

Fig. 6

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  文献评价指标  
  下载次数:2次 浏览次数:0次