| BMC Medical Research Methodology | |
| A wide range of missing imputation approaches in longitudinal data: a simulation study and real data analysis | |
| Research | |
| Mahdi Akbarzadeh1  Mohammad Reza Moghadas1  Maryam S. Daneshpour1  Mina Jahangiri2  Anoshirvan Kazemnejad2  Shayan Mostafaei3  Keith S. Goldfeld4  Davood Khalili5  | |
| [1] Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran;Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran;Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden;Division of Biostatistics, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA;Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran; | |
| 关键词: Single imputation; Multiple imputations; Missing longitudinal data; Longitudinal regression tree; | |
| DOI : 10.1186/s12874-023-01968-8 | |
| received in 2023-01-11, accepted in 2023-06-08, 发布年份 2023 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundMissing data is a pervasive problem in longitudinal data analysis. Several single-imputation (SI) and multiple-imputation (MI) approaches have been proposed to address this issue. In this study, for the first time, the function of the longitudinal regression tree algorithm as a non-parametric method after imputing missing data using SI and MI was investigated using simulated and real data.MethodUsing different simulation scenarios derived from a real data set, we compared the performance of cross, trajectory mean, interpolation, copy-mean, and MI methods (27 approaches) to impute missing longitudinal data using parametric and non-parametric longitudinal models and the performance of the methods was assessed in real data. The real data included 3,645 participants older than 18 years within six waves obtained from the longitudinal Tehran cardiometabolic genetic study (TCGS). The data modeling was conducted using systolic and diastolic blood pressure (SBP/DBP) as the outcome variables and included predictor variables such as age, gender, and BMI. The efficiency of imputation approaches was compared using mean squared error (MSE), root-mean-squared error (RMSE), median absolute deviation (MAD), deviance, and Akaike information criteria (AIC).ResultsThe longitudinal regression tree algorithm outperformed based on the criteria such as MSE, RMSE, and MAD than the linear mixed-effects model (LMM) for analyzing the TCGS and simulated data using the missing at random (MAR) mechanism. Overall, based on fitting the non-parametric model, the performance of the 27 imputation approaches was nearly similar. However, the SI traj-mean method improved performance compared with other imputation approaches.ConclusionBoth SI and MI approaches performed better using the longitudinal regression tree algorithm compared with the parametric longitudinal models. Based on the results from both the real and simulated data, we recommend that researchers use the traj-mean method for imputing missing values of longitudinal data. Choosing the imputation method with the best performance is widely dependent on the models of interest and the data structure.
【 授权许可】
CC BY
© The Author(s) 2023
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202309140534344ZK.pdf | 1669KB | ||
| Fig. 7 | 1108KB | Image | |
| MediaObjects/13690_2023_1118_MOESM3_ESM.docx | 16KB | Other | |
| MediaObjects/41408_2023_870_MOESM1_ESM.docx | 41KB | Other | |
| 42004_2023_944_Article_IEq6.gif | 1KB | Image | |
| Fig. 11 | 2013KB | Image | |
| MediaObjects/13100_2023_296_MOESM6_ESM.zip | 75KB | Package | |
| Fig. 2 | 23KB | Image | |
| Fig. 1 | 1438KB | Image | |
| Fig. 3 | 361KB | Image | |
| Fig. 1 | 1051KB | Image | |
| 12938_2023_1124_Article_IEq13.gif | 1KB | Image | |
| 12938_2023_1124_Article_IEq11.gif | 1KB | Image | |
| Fig. 7 | 1062KB | Image | |
| 42004_2023_934_Article_IEq2.gif | 1KB | Image | |
| Fig. 3 | 1319KB | Image | |
| 42004_2023_934_Article_IEq6.gif | 1KB | Image | |
| Fig. 12 | 2193KB | Image | |
| Fig. 2 | 1383KB | Image | |
| Fig. 6 | 1034KB | Image | |
| 12938_2023_1124_Article_IEq34.gif | 1KB | Image | |
| Fig. 4 | 2108KB | Image | |
| Fig. 1 | 177KB | Image | |
| Fig. 5 | 199KB | Image | |
| Fig. 1 | 49KB | Image | |
| Fig. 1 | 164KB | Image | |
| Fig. 1 | 694KB | Image | |
| MediaObjects/13227_2023_215_MOESM1_ESM.docx | 2696KB | Other | |
| Fig. 3 | 725KB | Image | |
| 12938_2023_1124_Article_IEq44.gif | 1KB | Image | |
| Fig. 7 | 1047KB | Image | |
| Fig.5 | 940KB | Image | |
| Fig. 2 | 525KB | Image | |
| Fig. 4 | 1919KB | Image | |
| 93KB | Image | ||
| Fig. 13 | 1583KB | Image | |
| MediaObjects/12903_2023_3168_MOESM1_ESM.xlsx | 96KB | Other | |
| Fig. 5 | 2951KB | Image | |
| MediaObjects/12974_2021_2193_MOESM1_ESM.pdf | 780KB | ||
| Fig. 4 | 66KB | Image | |
| 40798_2023_598_Article_IEq1.gif | 1KB | Image | |
| Fig. 14 | 980KB | Image | |
| Fig. 9 | 2347KB | Image | |
| 40798_2023_598_Article_IEq5.gif | 1KB | Image | |
| 40798_2023_598_Article_IEq7.gif | 1KB | Image | |
| 40798_2023_598_Article_IEq9.gif | 1KB | Image | |
| 40798_2023_598_Article_IEq10.gif | 1KB | Image | |
| Fig. 1 | 263KB | Image | |
| MediaObjects/12902_2023_1402_MOESM1_ESM.pdf | 297KB | ||
| 40798_2023_598_Article_IEq14.gif | 1KB | Image | |
| MediaObjects/40345_2023_304_MOESM1_ESM.docx | 33KB | Other | |
| 40798_2023_598_Article_IEq15.gif | 1KB | Image | |
| Fig. 2 | 103KB | Image | |
| Fig. 1 | 52KB | Image | |
| 40798_2023_598_Article_IEq28.gif | 1KB | Image | |
| 40798_2023_598_Article_IEq30.gif | 1KB | Image | |
| 40708_2023_197_Article_IEq35.gif | 1KB | Image | |
| Fig. 1 | 151KB | Image | |
| Fig.8 | 1048KB | Image | |
| Fig. 1 | 296KB | Image |
【 图 表 】
Fig. 1
Fig.8
Fig. 1
40708_2023_197_Article_IEq35.gif
40798_2023_598_Article_IEq30.gif
40798_2023_598_Article_IEq28.gif
Fig. 1
Fig. 2
40798_2023_598_Article_IEq15.gif
40798_2023_598_Article_IEq14.gif
Fig. 1
40798_2023_598_Article_IEq10.gif
40798_2023_598_Article_IEq9.gif
40798_2023_598_Article_IEq7.gif
40798_2023_598_Article_IEq5.gif
Fig. 9
Fig. 14
40798_2023_598_Article_IEq1.gif
Fig. 4
Fig. 5
Fig. 13
Fig. 4
Fig. 2
Fig.5
Fig. 7
12938_2023_1124_Article_IEq44.gif
Fig. 3
Fig. 1
Fig. 1
Fig. 1
Fig. 5
Fig. 1
Fig. 4
12938_2023_1124_Article_IEq34.gif
Fig. 6
Fig. 2
Fig. 12
42004_2023_934_Article_IEq6.gif
Fig. 3
42004_2023_934_Article_IEq2.gif
Fig. 7
12938_2023_1124_Article_IEq11.gif
12938_2023_1124_Article_IEq13.gif
Fig. 1
Fig. 3
Fig. 1
Fig. 2
Fig. 11
42004_2023_944_Article_IEq6.gif
Fig. 7
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]
- [80]
- [81]
- [82]
- [83]
PDF