期刊论文详细信息
BMC Medical Research Methodology
A wide range of missing imputation approaches in longitudinal data: a simulation study and real data analysis
Research
Mahdi Akbarzadeh1  Mohammad Reza Moghadas1  Maryam S. Daneshpour1  Mina Jahangiri2  Anoshirvan Kazemnejad2  Shayan Mostafaei3  Keith S. Goldfeld4  Davood Khalili5 
[1] Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran;Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran;Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden;Division of Biostatistics, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA;Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran;
关键词: Single imputation;    Multiple imputations;    Missing longitudinal data;    Longitudinal regression tree;   
DOI  :  10.1186/s12874-023-01968-8
 received in 2023-01-11, accepted in 2023-06-08,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundMissing data is a pervasive problem in longitudinal data analysis. Several single-imputation (SI) and multiple-imputation (MI) approaches have been proposed to address this issue. In this study, for the first time, the function of the longitudinal regression tree algorithm as a non-parametric method after imputing missing data using SI and MI was investigated using simulated and real data.MethodUsing different simulation scenarios derived from a real data set, we compared the performance of cross, trajectory mean, interpolation, copy-mean, and MI methods (27 approaches) to impute missing longitudinal data using parametric and non-parametric longitudinal models and the performance of the methods was assessed in real data. The real data included 3,645 participants older than 18 years within six waves obtained from the longitudinal Tehran cardiometabolic genetic study (TCGS). The data modeling was conducted using systolic and diastolic blood pressure (SBP/DBP) as the outcome variables and included predictor variables such as age, gender, and BMI. The efficiency of imputation approaches was compared using mean squared error (MSE), root-mean-squared error (RMSE), median absolute deviation (MAD), deviance, and Akaike information criteria (AIC).ResultsThe longitudinal regression tree algorithm outperformed based on the criteria such as MSE, RMSE, and MAD than the linear mixed-effects model (LMM) for analyzing the TCGS and simulated data using the missing at random (MAR) mechanism. Overall, based on fitting the non-parametric model, the performance of the 27 imputation approaches was nearly similar. However, the SI traj-mean method improved performance compared with other imputation approaches.ConclusionBoth SI and MI approaches performed better using the longitudinal regression tree algorithm compared with the parametric longitudinal models. Based on the results from both the real and simulated data, we recommend that researchers use the traj-mean method for imputing missing values of longitudinal data. Choosing the imputation method with the best performance is widely dependent on the models of interest and the data structure.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202309140534344ZK.pdf 1669KB PDF download
Fig. 7 1108KB Image download
MediaObjects/13690_2023_1118_MOESM3_ESM.docx 16KB Other download
MediaObjects/41408_2023_870_MOESM1_ESM.docx 41KB Other download
42004_2023_944_Article_IEq6.gif 1KB Image download
Fig. 11 2013KB Image download
MediaObjects/13100_2023_296_MOESM6_ESM.zip 75KB Package download
Fig. 2 23KB Image download
Fig. 1 1438KB Image download
Fig. 3 361KB Image download
Fig. 1 1051KB Image download
12938_2023_1124_Article_IEq13.gif 1KB Image download
12938_2023_1124_Article_IEq11.gif 1KB Image download
Fig. 7 1062KB Image download
42004_2023_934_Article_IEq2.gif 1KB Image download
Fig. 3 1319KB Image download
42004_2023_934_Article_IEq6.gif 1KB Image download
Fig. 12 2193KB Image download
Fig. 2 1383KB Image download
Fig. 6 1034KB Image download
12938_2023_1124_Article_IEq34.gif 1KB Image download
Fig. 4 2108KB Image download
Fig. 1 177KB Image download
Fig. 5 199KB Image download
Fig. 1 49KB Image download
Fig. 1 164KB Image download
Fig. 1 694KB Image download
MediaObjects/13227_2023_215_MOESM1_ESM.docx 2696KB Other download
Fig. 3 725KB Image download
12938_2023_1124_Article_IEq44.gif 1KB Image download
Fig. 7 1047KB Image download
Fig.5 940KB Image download
Fig. 2 525KB Image download
Fig. 4 1919KB Image download
93KB Image download
Fig. 13 1583KB Image download
MediaObjects/12903_2023_3168_MOESM1_ESM.xlsx 96KB Other download
Fig. 5 2951KB Image download
MediaObjects/12974_2021_2193_MOESM1_ESM.pdf 780KB PDF download
Fig. 4 66KB Image download
40798_2023_598_Article_IEq1.gif 1KB Image download
Fig. 14 980KB Image download
Fig. 9 2347KB Image download
40798_2023_598_Article_IEq5.gif 1KB Image download
40798_2023_598_Article_IEq7.gif 1KB Image download
40798_2023_598_Article_IEq9.gif 1KB Image download
40798_2023_598_Article_IEq10.gif 1KB Image download
Fig. 1 263KB Image download
MediaObjects/12902_2023_1402_MOESM1_ESM.pdf 297KB PDF download
40798_2023_598_Article_IEq14.gif 1KB Image download
MediaObjects/40345_2023_304_MOESM1_ESM.docx 33KB Other download
40798_2023_598_Article_IEq15.gif 1KB Image download
Fig. 2 103KB Image download
Fig. 1 52KB Image download
40798_2023_598_Article_IEq28.gif 1KB Image download
40798_2023_598_Article_IEq30.gif 1KB Image download
40708_2023_197_Article_IEq35.gif 1KB Image download
Fig. 1 151KB Image download
Fig.8 1048KB Image download
Fig. 1 296KB Image download
【 图 表 】

Fig. 1

Fig.8

Fig. 1

40708_2023_197_Article_IEq35.gif

40798_2023_598_Article_IEq30.gif

40798_2023_598_Article_IEq28.gif

Fig. 1

Fig. 2

40798_2023_598_Article_IEq15.gif

40798_2023_598_Article_IEq14.gif

Fig. 1

40798_2023_598_Article_IEq10.gif

40798_2023_598_Article_IEq9.gif

40798_2023_598_Article_IEq7.gif

40798_2023_598_Article_IEq5.gif

Fig. 9

Fig. 14

40798_2023_598_Article_IEq1.gif

Fig. 4

Fig. 5

Fig. 13

Fig. 4

Fig. 2

Fig.5

Fig. 7

12938_2023_1124_Article_IEq44.gif

Fig. 3

Fig. 1

Fig. 1

Fig. 1

Fig. 5

Fig. 1

Fig. 4

12938_2023_1124_Article_IEq34.gif

Fig. 6

Fig. 2

Fig. 12

42004_2023_934_Article_IEq6.gif

Fig. 3

42004_2023_934_Article_IEq2.gif

Fig. 7

12938_2023_1124_Article_IEq11.gif

12938_2023_1124_Article_IEq13.gif

Fig. 1

Fig. 3

Fig. 1

Fig. 2

Fig. 11

42004_2023_944_Article_IEq6.gif

Fig. 7

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  文献评价指标  
  下载次数:4次 浏览次数:0次