期刊论文详细信息
Journal of Cheminformatics
Merging bioactivity predictions from cell morphology and chemical fingerprint models using similarity to training data
Research
Satvik Singh1  Ola Spjuth2  Jordi Carreras-Puigvert2  Hongbin Yang3  Andreas Bender3  Maria-Anna Trapotsi3  Srijit Seal3 
[1] Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Cambridge, UK;Department of Pharmaceutical Biosciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden;Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK;
关键词: Machine learning;    Cell Painting;    Structure;    Toxicity;    Bioactivity;    Applicability domain;   
DOI  :  10.1186/s13321-023-00723-x
 received in 2023-02-05, accepted in 2023-04-20,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

The applicability domain of machine learning models trained on structural fingerprints for the prediction of biological endpoints is often limited by the lack of diversity of chemical space of the training data. In this work, we developed similarity-based merger models which combined the outputs of individual models trained on cell morphology (based on Cell Painting) and chemical structure (based on chemical fingerprints) and the structural and morphological similarities of the compounds in the test dataset to compounds in the training dataset. We applied these similarity-based merger models using logistic regression models on the predictions and similarities as features and predicted assay hit calls of 177 assays from ChEMBL, PubChem and the Broad Institute (where the required Cell Painting annotations were available). We found that the similarity-based merger models outperformed other models with an additional 20% assays (79 out of 177 assays) with an AUC > 0.70 compared with 65 out of 177 assays using structural models and 50 out of 177 assays using Cell Painting models. Our results demonstrated that similarity-based merger models combining structure and cell morphology models can more accurately predict a wide range of biological assay outcomes and further expanded the applicability domain by better extrapolating to new structural and morphology spaces.Graphical Abstract

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202309075170154ZK.pdf 2693KB PDF download
41116_2023_37_Article_IEq9.gif 1KB Image download
41116_2023_37_Article_IEq10.gif 1KB Image download
Fig. 1 41KB Image download
Fig. 1 120KB Image download
Fig. 2 97KB Image download
41116_2023_37_Article_IEq25.gif 1KB Image download
41116_2023_37_Article_IEq28.gif 1KB Image download
41116_2023_37_Article_IEq30.gif 1KB Image download
41116_2023_37_Article_IEq31.gif 1KB Image download
41116_2023_37_Article_IEq32.gif 1KB Image download
41116_2023_37_Article_IEq33.gif 1KB Image download
Fig. 1 130KB Image download
41116_2023_37_Article_IEq36.gif 1KB Image download
【 图 表 】

41116_2023_37_Article_IEq36.gif

Fig. 1

41116_2023_37_Article_IEq33.gif

41116_2023_37_Article_IEq32.gif

41116_2023_37_Article_IEq31.gif

41116_2023_37_Article_IEq30.gif

41116_2023_37_Article_IEq28.gif

41116_2023_37_Article_IEq25.gif

Fig. 2

Fig. 1

Fig. 1

41116_2023_37_Article_IEq10.gif

41116_2023_37_Article_IEq9.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  文献评价指标  
  下载次数:5次 浏览次数:2次