期刊论文详细信息
Journal of NeuroEngineering and Rehabilitation
Long-term forecasting of a motor outcome following rehabilitation in chronic stroke via a hierarchical bayesian dynamic model
Research
Carolee Winstein1  Nicolas Schweighofer1  David Z. D’Argenio2  Dongze Ye3  Haipeng Luo3 
[1] Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, USA;Biomedical Engineering, University of Southern California, Los Angeles, USA;Computer Science, University of Southern California, Los Angeles, USA;
关键词: Chronic stroke;    Neurorehabilitation;    Motor learning;    Forecasting model;    Hierarchical bayesian modeling;    Dynamical models;   
DOI  :  10.1186/s12984-023-01202-y
 received in 2023-03-11, accepted in 2023-06-09,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundGiven the heterogeneity of stroke, it is important to determine the best course of motor therapy for each patient, i.e., to personalize rehabilitation based on predictions of long-term outcomes. Here, we propose a hierarchical Bayesian dynamic (i.e., state-space) model (HBDM) to forecast long-term changes in a motor outcome due to rehabilitation in the chronic phase post-stroke.MethodsThe model incorporates the effects of clinician-supervised training, self-training, and forgetting. In addition, to improve forecasting early in rehabilitation, when data are sparse or unavailable, we use the Bayesian hierarchical modeling technique to incorporate prior information from similar patients. We use HBDM to re-analyze the Motor Activity Log (MAL) data of participants with chronic stroke included in two clinical trials: (1) the DOSE trial, in which participants were assigned to a 0, 15, 30, or 60-h dose condition (data of 40 participants analyzed), and (2) the EXCITE trial, in which participants were assigned a 60-h dose, in either an immediate or a delayed condition (95 participants analyzed).ResultsFor both datasets, HBDM accounts well for individual dynamics in the MAL during and outside of training: mean RMSE = 0.28 for all 40 DOSE participants (participant-level RMSE 0.26 ± 0.19—95% CI) and mean RMSE = 0.325 for all 95 EXCITE participants (participant-level RMSE 0.32 ± 0.31), which are small compared to the 0-5 range of the MAL. Bayesian leave-one-out cross-validation shows that the model has better predictive accuracy than static regression models and simpler dynamic models that do not account for the effect of supervised training, self-training, or forgetting. We then showcase model’s ability to forecast the MAL of “new” participants up to 8 months ahead. The mean RMSE at 6 months post-training was 1.36 using only the baseline MAL and then decreased to 0.91, 0.79, and 0.69 (respectively) with the MAL following the 1st, 2nd, and 3rd bouts of training. In addition, hierarchical modeling improves prediction for a patient early in training. Finally, we verify that this model, despite its simplicity, can reproduce previous findings of the DOSE trial on the efficiency, efficacy, and retention of motor therapy.ConclusionsIn future work, such forecasting models can be used to simulate different stages of recovery, dosages, and training schedules to optimize rehabilitation for each person.Trial registration This study contains a re-analysis of data from the DOSE clinical trial ID NCT01749358 and the EXCITE clinical trial ID NCT00057018

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202309072441802ZK.pdf 2752KB PDF download
Fig. 1 727KB Image download
Fig. 2 171KB Image download
40517_2023_259_Article_IEq84.gif 1KB Image download
40517_2023_259_Article_IEq85.gif 1KB Image download
40517_2023_259_Article_IEq57.gif 1KB Image download
40517_2023_259_Article_IEq58.gif 1KB Image download
40517_2023_259_Article_IEq75.gif 1KB Image download
40517_2023_259_Article_IEq76.gif 1KB Image download
40517_2023_259_Article_IEq77.gif 1KB Image download
40517_2023_259_Article_IEq78.gif 1KB Image download
40517_2023_259_Article_IEq79.gif 1KB Image download
Fig. 4 1304KB Image download
MediaObjects/41408_2023_863_MOESM4_ESM.pdf 39018KB PDF download
40517_2023_259_Article_IEq82.gif 1KB Image download
40517_2023_259_Article_IEq83.gif 1KB Image download
Fig. 1 98KB Image download
MediaObjects/12974_2023_2790_MOESM2_ESM.tif 140748KB Other download
Fig. 7 932KB Image download
Fig. 2 69KB Image download
MediaObjects/12944_2023_1848_MOESM2_ESM.pdf 1455KB PDF download
MediaObjects/13690_2023_1119_MOESM5_ESM.docx 58KB Other download
Fig. 2 89KB Image download
MediaObjects/13690_2023_1119_MOESM6_ESM.docx 103KB Other download
Fig. 3 952KB Image download
12888_2023_4935_Article_IEq1.gif 1KB Image download
Fig. 3 2641KB Image download
Fig. 3 163KB Image download
Fig. 5 520KB Image download
Fig. 4 120KB Image download
MediaObjects/12888_2023_4935_MOESM1_ESM.docx 3622KB Other download
Fig. 1 261KB Image download
Fig. 2 63KB Image download
Fig. 3 118KB Image download
Fig. 2 621KB Image download
Fig. 2 1798KB Image download
Fig. 1 1048KB Image download
MediaObjects/12974_2023_2830_MOESM1_ESM.docx 9117KB Other download
Fig. 4 591KB Image download
Fig. 5 40KB Image download
Fig. 3 620KB Image download
Fig. 1 291KB Image download
MediaObjects/12888_2023_4813_MOESM2_ESM.docx 16KB Other download
Fig. 7 839KB Image download
Fig. 7 1933KB Image download
Fig. 1 72KB Image download
Fig. 2 83KB Image download
Fig. 6 1515KB Image download
12302_2023_750_Article_IEq8.gif 1KB Image download
Fig. 1 90KB Image download
Fig. 9 480KB Image download
MediaObjects/12888_2023_4894_MOESM1_ESM.docx 25KB Other download
40854_2023_495_Article_IEq32.gif 1KB Image download
MediaObjects/42004_2023_899_MOESM1_ESM.pdf 300KB PDF download
Fig. 1 3497KB Image download
Fig. 7 738KB Image download
42004_2023_911_Article_IEq8.gif 1KB Image download
42004_2023_911_Article_IEq10.gif 1KB Image download
MediaObjects/13046_2023_2715_MOESM8_ESM.pdf 1037KB PDF download
42004_2023_911_Article_IEq12.gif 1KB Image download
Fig. 3 2716KB Image download
42004_2023_911_Article_IEq16.gif 1KB Image download
42004_2023_911_Article_IEq17.gif 1KB Image download
42004_2023_911_Article_IEq18.gif 1KB Image download
42004_2023_911_Article_IEq19.gif 1KB Image download
42004_2023_911_Article_IEq20.gif 1KB Image download
Fig. 3 230KB Image download
MediaObjects/13046_2023_2715_MOESM9_ESM.pdf 6625KB PDF download
42004_2023_911_Article_IEq23.gif 1KB Image download
Fig. 4 594KB Image download
42004_2023_911_Article_IEq25.gif 1KB Image download
Fig. 1 1316KB Image download
Fig. 8 2087KB Image download
Fig. 5 1124KB Image download
42004_2023_911_Article_IEq30.gif 1KB Image download
42004_2023_911_Article_IEq031.gif 1KB Image download
Fig. 5 389KB Image download
Fig. 1 874KB Image download
Fig. 2 194KB Image download
42004_2023_911_Article_IEq32.gif 1KB Image download
42004_2023_911_Article_IEq33.gif 1KB Image download
603KB Image download
Fig. 6 748KB Image download
42004_2023_911_Article_IEq36.gif 1KB Image download
Fig. 1 69KB Image download
42004_2023_911_Article_IEq041.gif 1KB Image download
42004_2023_911_Article_IEq042.gif 1KB Image download
Fig. 1 954KB Image download
MediaObjects/12974_2023_2824_MOESM1_ESM.tiff 6070KB Other download
MediaObjects/12888_2023_4875_MOESM2_ESM.docx 14KB Other download
MediaObjects/12888_2023_4875_MOESM3_ESM.docx 13KB Other download
【 图 表 】

Fig. 1

42004_2023_911_Article_IEq042.gif

42004_2023_911_Article_IEq041.gif

Fig. 1

42004_2023_911_Article_IEq36.gif

Fig. 6

42004_2023_911_Article_IEq33.gif

42004_2023_911_Article_IEq32.gif

Fig. 2

Fig. 1

Fig. 5

42004_2023_911_Article_IEq031.gif

42004_2023_911_Article_IEq30.gif

Fig. 5

Fig. 8

Fig. 1

42004_2023_911_Article_IEq25.gif

Fig. 4

42004_2023_911_Article_IEq23.gif

Fig. 3

42004_2023_911_Article_IEq20.gif

42004_2023_911_Article_IEq19.gif

42004_2023_911_Article_IEq18.gif

42004_2023_911_Article_IEq17.gif

42004_2023_911_Article_IEq16.gif

Fig. 3

42004_2023_911_Article_IEq12.gif

42004_2023_911_Article_IEq10.gif

42004_2023_911_Article_IEq8.gif

Fig. 7

Fig. 1

40854_2023_495_Article_IEq32.gif

Fig. 9

Fig. 1

12302_2023_750_Article_IEq8.gif

Fig. 6

Fig. 2

Fig. 1

Fig. 7

Fig. 7

Fig. 1

Fig. 3

Fig. 5

Fig. 4

Fig. 1

Fig. 2

Fig. 2

Fig. 3

Fig. 2

Fig. 1

Fig. 4

Fig. 5

Fig. 3

Fig. 3

12888_2023_4935_Article_IEq1.gif

Fig. 3

Fig. 2

Fig. 2

Fig. 7

Fig. 1

40517_2023_259_Article_IEq83.gif

40517_2023_259_Article_IEq82.gif

Fig. 4

40517_2023_259_Article_IEq79.gif

40517_2023_259_Article_IEq78.gif

40517_2023_259_Article_IEq77.gif

40517_2023_259_Article_IEq76.gif

40517_2023_259_Article_IEq75.gif

40517_2023_259_Article_IEq58.gif

40517_2023_259_Article_IEq57.gif

40517_2023_259_Article_IEq85.gif

40517_2023_259_Article_IEq84.gif

Fig. 2

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  文献评价指标  
  下载次数:10次 浏览次数:1次