期刊论文详细信息
BMC Medical Research Methodology
Robust estimation of dementia prevalence from two-phase surveys with non-responders via propensity score stratification
Research Article
Ke Deng1  Chong Shen1  Luning Wang2  Jiping Tan2  Yiming Zhao3  Minyue Pei3  Xiaoxiao Wang3  Nan Li3 
[1] Center for Statistical Science, Department of Industrial Engineering, Tsinghua University, No. 30, Shuangqing Road, Haidian District, 100084, Beijing, People’s Republic of China;Geriatric Neurology Department of The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, 100039, Beijing, People’s Republic of China;Research Center of Clinical Epidemiology, Peking University Third Hospital, No. 49, Huayuan North Road, Haidian District, 100191, Beijing, People’s Republic of China;Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, People’s Republic of China;
关键词: Prevalence estimation;    Missing data;    Propensity score;   
DOI  :  10.1186/s12874-023-01954-0
 received in 2022-09-20, accepted in 2023-05-16,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundMissing diagnoses are common in cross-sectional studies of dementia, and this missingness is usually related to whether the respondent has dementia or not. Failure to properly address this issue can lead to underestimation of prevalence. To obtain accurate prevalence estimates, we propose different estimation methods within the framework of propensity score stratification (PSS), which can significantly reduce the negative impact of non-response on prevalence estimates.MethodsTo obtain accurate estimates of dementia prevalence, we calculated the propensity score (PS) of each participant to be a non-responder using logistic regression with demographic information, cognitive tests and physical function variables as covariates. We then divided all participants into five equal-sized strata based on their PS. The stratum-specific prevalence of dementia was estimated using simple estimation (SE), regression estimation (RE), and regression estimation with multiple imputation (REMI). These stratum-specific estimates were integrated to obtain an overall estimate of dementia prevalence.ResultsThe estimated prevalence of dementia using SE, RE, and REMI with PSS was 12.24%, 12.28%, and 12.20%, respectively. These estimates showed higher consistency than the estimates obtained without PSS, which were 11.64%, 12.33%, and 11.98%, respectively. Furthermore, considering only the observed diagnoses, the prevalence in the same group was found to be 9.95%, which is significantly lower than the prevalence estimated by our proposed method. This suggested that prevalence estimates obtained without properly accounting for missing data might underestimate the true prevalence.ConclusionEstimating the prevalence of dementia using the PSS provides a more robust and less biased estimate.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202308158459576ZK.pdf 2651KB PDF download
40517_2023_258_Article_IEq51.gif 1KB Image download
41116_2023_36_Article_IEq724.gif 1KB Image download
MediaObjects/12888_2023_4796_MOESM1_ESM.docx 14KB Other download
41116_2023_36_Article_IEq765.gif 1KB Image download
Fig. 2 427KB Image download
41116_2023_36_Article_IEq774.gif 1KB Image download
41116_2023_36_Article_IEq777.gif 1KB Image download
41116_2023_36_Article_IEq778.gif 1KB Image download
41116_2023_36_Article_IEq781.gif 1KB Image download
41116_2023_36_Article_IEq783.gif 1KB Image download
41116_2023_36_Article_IEq785.gif 1KB Image download
41116_2023_36_Article_IEq786.gif 1KB Image download
41116_2023_36_Article_IEq116.gif 1KB Image download
41116_2023_36_Article_IEq117.gif 1KB Image download
40517_2023_256_Article_IEq4.gif 1KB Image download
40517_2023_256_Article_IEq5.gif 1KB Image download
Fig. 5 204KB Image download
40517_2023_256_Article_IEq11.gif 1KB Image download
Fig. 7 383KB Image download
MediaObjects/12888_2023_4796_MOESM1_ESM.docx 14KB Other download
Fig. 6 158KB Image download
MediaObjects/12888_2023_4796_MOESM2_ESM.docx 15KB Other download
Fig. 8 794KB Image download
40517_2023_256_Article_IEq14.gif 1KB Image download
Fig. 1 136KB Image download
MediaObjects/40249_2023_1063_MOESM6_ESM.jpg 748KB Other download
Fig. 1 172KB Image download
40517_2023_258_Article_IEq113.gif 1KB Image download
40517_2023_258_Article_IEq114.gif 1KB Image download
40517_2023_258_Article_IEq115.gif 1KB Image download
MediaObjects/12888_2023_4818_MOESM1_ESM.docx 52KB Other download
Fig. 1 92KB Image download
MediaObjects/12888_2023_4818_MOESM2_ESM.docx 36KB Other download
40517_2023_258_Article_IEq119.gif 1KB Image download
【 图 表 】

40517_2023_258_Article_IEq119.gif

Fig. 1

40517_2023_258_Article_IEq115.gif

40517_2023_258_Article_IEq114.gif

40517_2023_258_Article_IEq113.gif

Fig. 1

Fig. 1

40517_2023_256_Article_IEq14.gif

Fig. 8

Fig. 6

Fig. 7

40517_2023_256_Article_IEq11.gif

Fig. 5

40517_2023_256_Article_IEq5.gif

40517_2023_256_Article_IEq4.gif

41116_2023_36_Article_IEq117.gif

41116_2023_36_Article_IEq116.gif

41116_2023_36_Article_IEq786.gif

41116_2023_36_Article_IEq785.gif

41116_2023_36_Article_IEq783.gif

41116_2023_36_Article_IEq781.gif

41116_2023_36_Article_IEq778.gif

41116_2023_36_Article_IEq777.gif

41116_2023_36_Article_IEq774.gif

Fig. 2

41116_2023_36_Article_IEq765.gif

41116_2023_36_Article_IEq724.gif

40517_2023_258_Article_IEq51.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  文献评价指标  
  下载次数:6次 浏览次数:2次